Heaps & Heapsort

Charles Babbage (1864) Analytic Engine (schematic)
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Heaps, heap sort and priority queues

priority Queue: data structure that maintains a set S
of elements.

Each element v in S has a key key(v) that denotes the
priority of v.

Priority Queue provides support for
adding, deleting elements,
selection / extraction of
smallest (Min prioQ) or largest (Max prioQ) key
element,
changing key value.
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Applications

E.g. used in managing real time events where we
want to get the earliest next event and events
are added / deleted on the fly.

Sorting

= build a prioQ
» Iteratively extract the smallest element

PrioQs can be implemented using heaps

Heaps

Heap: array representation of a complete
binary tree
« every level is completely filled
except the bottom level: filled from
left fo right

16

» Can compute the index of parent and 14 7 Ny
children: WHY? S 7N\
- parent(i) = floor((i-1)/2)
leftChild(i)= 2i+1 N7
rightChild(i)=2(i+1) 1614108 793241
0 123456789

Max Heap property:
for all nodes i>0: A[parent(i)] >= A[i]
Max heaps have the max at the root

Min heaps have the min at the root

3
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Heapify(A,i,n) Swapping Down

To create a heap at index i, assuming left(i) and right(i) are SMV:ICTPIID:;(Q]TC:;):V.H enforces (max) heap property af the
heaps, bubble A[i] down: swap with max child until heap P '
property holds hew «
heaplfy(A i,n): 7N 7N
# precondition Y X y new
# nis the size of the heap _
# tree left(i) and tree r'lghT(l) are heaps new<x and y<x: x>y and x>new

swap(x,new)

Are we done now?
# postcondition: tree A[i]is a heap
NO! When we have swapped we need to carry
on checking whether new is in heap position. We
stop when that is the case.
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Heap Extract

Heap extract:
Delete (and return) root
Step 1: replace root with last array element to keep
completeness
Step 2: reinstate the heap property
Which element does not necessarily have the heap
property?

How can it be fixed?

Complexity?
heapify the root

O(log n)

Swap down: swap with maximum (maxheap), minimum
(minheap) child as necessary, until in place.
Sometimes called bubble down

Correctness based on the fact that we started with a heap,

so the children of the root are heaps

7
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Heap Insert

Step 1: put a new value into first open position
(maintaining completeness), i.e. at the end of the
array, but now we potentially violated the heap
property, so:

Step 2: bubble up
. Re-enforcing the heap property

. Swap with parent, if new value > parent, until in the
right place.

« The heap property holds for the tree below the new
value, when swapping up. WHY? We only compared the
new element to the parent, not to the sibling!
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Swapping up

Swapping up enforces heap property for the sub tree below
the new, inserted value:

X new
7\ 7\
y new y X
if (new > x) swap(x,new) x>y, therefore new >y
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Building a heap

heapify performs at most Ig n swaps
why? what is n?
buildheap: builds a heap out of an array:

» the leaves are all heaps WHY?
» heapify backwards starting at last internal node

WHY backwards?
WHY last internal node?
which node is that?
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LERT'S DO THE BUILDHEAP!

4
[4,8,7,2,14,1] 8/\7
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2 14 1
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14/\7 4 7
N\ 7 N\ 7
2 8 1 2 8 1
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2 14 1
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Complexity buildheap

Suggestions? ...
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Complexity buildheap complexity buildheap
Initial thought: O(n Ign), but
half of the heaps are height O height max #swaps ?
quarter are height 1 o
only one is height log n O
b N
It turns out that O(n Ign) is not tight!

el
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complexity buildheap complexity buildheap

. max #swaps, see a pattern? .
height (What kind of growth function do you expect ?) height max #swaps

- ol
0 (o) 0 0 o) 0 =22

S W R

2 QG 2%1+2 = 4 2 QG 2*%1+2 =4 = 23-4

3 2*%4+3 = 11 3 2*4+3 = 11= 24-5
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complexity buildheap

height max #swaps
0 o) 0 =22

1 ORO e

2 QG 2*1+2 =4 =234

3 2*4+3=11= 245

Conjecture:
height = h
max #swaps = 2M!-(h+2)

Proof: induction

base?

step:
height = (h+1)
max #swaps:

2*(2M1-(h+2))+(h+1)

= 2"2-2h-4+h+1
= 22-(h+3)
= 2+ ((h+1)+2)

n nodes >®(n) swaps
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See it the Master theorem way

T(n) = 2*T(n/2)+ Ig n

Master theorem @(nlgzz) = @(I’l)
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Heapsort, complexity

heapsort(A):
buildheap(A) # O(n)
for i =n-1downto 1: # O((n)

# put max at end array

# max is removed from heap
n=n-1

# reinstate heap property # *(lgn))

- heapify: ©(Ign)

- heapExtract: @(lg n)
- buildheap: ®(n)

- heapsort: ®(nlg n)
- space: in place: ®(n)
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DO THE HEAPSORT, DO IT, DO IT!

14 8 7 4
N
A N N 7N\,
s\ 7 N /
2 4 1 2 114 2 8 14 7 8 14
2 1
v
1
4 7 8 14 24 7 8 14 1247 8 14
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How not to heapExtract, heapInsert

# These "snail" implementations are NOT preserving the algorithm

# complexity of extractMin: log n and insert: log n and are therefore
# INCORRECT! from a complexity point of view (even though they are
# functionally correct). Remember one of the goals of our course:

#  implementing the algorithms maintaining the analyzed complexity
# What are their complexities?

def snailExtractMin(A):
n = len(A)
ifn==0:
return None
min = A[0]
A[0]=A[n-1]
A.pop()
buildHeap(A) # O(n)
return min

def snailInsert(A,v):
A.append(v)
buildHeap(A) # O(n)
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Priority Queues

heaps can be used to implement priority queues:

» each value associated with a key
= max priority queue S has operations that maintain
the heap property of S
-max(S) returning max element
- Extract-max(S) extracting and returning max
element
-increase key(S,x k) increasing the key value of x
- insert(S,x)
« put xatendof S
* bubble x up in place
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