Heaps & Heapsort

Charles Babbage (1864) Analytic Engine (schematic)

Copyright 2000, Kevin Wayne

Heaps, heap sort and priority queues

priority Queue: data structure that maintains a set S
of elements.

Each element v in S has a key key(v) that denotes the
priority of v.

Priority Queue provides support for
adding, deleting elements,
selection / extraction of
smallest (Min prioQ) or largest (Max prioQ) key
element,
changing key value.

9/8/21

Applications

E.g. used in managing real time events where we
want to get the earliest next event and events
are added / deleted on the fly.

Sorting

= build a prioQ
» Iteratively extract the smallest element

PrioQs can be implemented using heaps

Heaps

Heap: array representation of a complete
binary tree
« every level is completely filled
except the bottom level: filled from
left fo right

16

» Can compute the index of parent and 14 7 Ny
children: WHY? S 7N\
- parent(i) = floor((i-1)/2)
leftChild(i)= 2i+1 N7
rightChild(i)=2(i+1) 1614108 793241
0 123456789

Max Heap property:
for all nodes i>0: A[parent(i)] >= A[i]
Max heaps have the max at the root

Min heaps have the min at the root

3

Copyright 2000, Kevin Wayne

9/8/21

9/8/21

Heapify(A,i,n) Swapping Down

To create a heap at index i, assuming left(i) and right(i) are SMV:ICTPIID:;(Q]TC:;):V.H enforces (max) heap property af the
heaps, bubble A[i] down: swap with max child until heap P '
property holds hew «
heaplfy(A i,n): 7N 7N
precondition Y X y new
nis the size of the heap _
tree left(i) and tree r'lghT(l) are heaps new<x and y<x: x>y and x>new

swap(x,new)

Are we done now?
postcondition: tree A[i]is a heap
NO! When we have swapped we need to carry
on checking whether new is in heap position. We
stop when that is the case.

Copyright 2000, Kevin Wayne

Heap Extract

Heap extract:
Delete (and return) root
Step 1: replace root with last array element to keep
completeness
Step 2: reinstate the heap property
Which element does not necessarily have the heap
property?

How can it be fixed?

Complexity?
heapify the root

O(log n)

Swap down: swap with maximum (maxheap), minimum
(minheap) child as necessary, until in place.
Sometimes called bubble down

Correctness based on the fact that we started with a heap,

so the children of the root are heaps

7

Copyright 2000, Kevin Wayne

Heap Insert

Step 1: put a new value into first open position
(maintaining completeness), i.e. at the end of the
array, but now we potentially violated the heap
property, so:

Step 2: bubble up
. Re-enforcing the heap property

. Swap with parent, if new value > parent, until in the
right place.

« The heap property holds for the tree below the new
value, when swapping up. WHY? We only compared the
new element to the parent, not to the sibling!

9/8/21

Swapping up

Swapping up enforces heap property for the sub tree below
the new, inserted value:

X new
7\ 7\
y new y X
if (new > x) swap(x,new) x>y, therefore new >y

Copyright 2000, Kevin Wayne

Building a heap

heapify performs at most Ig n swaps
why? what is n?
buildheap: builds a heap out of an array:

» the leaves are all heaps WHY?
» heapify backwards starting at last internal node

WHY backwards?
WHY last internal node?
which node is that?

9/8/21

LERT'S DO THE BUILDHEAP!

4
[4,8,7,2,14,1] 8/\7
R AN
2 14 1
4 14
14/\7 4 7
N\ 7 N\ 7
2 8 1 2 8 1

R
ad

2 14 1

Copyright 2000, Kevin Wayne

Complexity buildheap

Suggestions? ...

9/8/21

9/8/21

Complexity buildheap complexity buildheap
Initial thought: O(n Ign), but
half of the heaps are height O height max #swaps ?
quarter are height 1 o
only one is height log n O
b N
It turns out that O(n Ign) is not tight!

el

Copyright 2000, Kevin Wayne 7

9/8/21

complexity buildheap complexity buildheap

. max #swaps, see a pattern? .
height (What kind of growth function do you expect ?) height max #swaps

- ol
0 (o) 0 0 o) 0 =22

S W R

2 QG 2%1+2 = 4 2 QG 2*%1+2 =4 = 23-4

3 2*%4+3 = 11 3 2*4+3 = 11= 24-5

Copyright 2000, Kevin Wayne 8

complexity buildheap

height max #swaps
0 o) 0 =22

1 ORO e

2 QG 2*1+2 =4 =234

3 2*4+3=11= 245

Conjecture:
height = h
max #swaps = 2M!-(h+2)

Proof: induction

base?

step:
height = (h+1)
max #swaps:

2*(2M1-(h+2))+(h+1)

= 2"2-2h-4+h+1
= 22-(h+3)
= 2+ ((h+1)+2)

n nodes >®(n) swaps

Copyright 2000, Kevin Wayne

See it the Master theorem way

T(n) = 2*T(n/2)+ Ig n

Master theorem @(nlgzz) = @(I’l)

9/8/21

Heapsort, complexity

heapsort(A):
buildheap(A) # O(n)
for i =n-1downto 1: # O((n)

put max at end array

max is removed from heap
n=n-1

reinstate heap property # *(lgn))

- heapify: ©(Ign)

- heapExtract: @(lg n)
- buildheap: ®(n)

- heapsort: ®(nlg n)
- space: in place: ®(n)

Copyright 2000, Kevin Wayne

DO THE HEAPSORT, DO IT, DO IT!

14 8 7 4
N
A N N 7N\,
s\ 7 N /
2 4 1 2 114 2 8 14 7 8 14
2 1
v
1
4 7 8 14 24 7 8 14 1247 8 14

9/8/21

10

How not to heapExtract, heapInsert

These "snail" implementations are NOT preserving the algorithm

complexity of extractMin: log n and insert: log n and are therefore
INCORRECT! from a complexity point of view (even though they are
functionally correct). Remember one of the goals of our course:

implementing the algorithms maintaining the analyzed complexity
What are their complexities?

def snailExtractMin(A):
n = len(A)
ifn==0:
return None
min = A[0]
A[0]=A[n-1]
A.pop()
buildHeap(A) # O(n)
return min

def snailInsert(A,v):
A.append(v)
buildHeap(A) # O(n)

Copyright 2000, Kevin Wayne

Priority Queues

heaps can be used to implement priority queues:

» each value associated with a key
= max priority queue S has operations that maintain
the heap property of S
-max(S) returning max element
- Extract-max(S) extracting and returning max
element
-increase key(S,x k) increasing the key value of x
- insert(S,x)
« put xatendof S
* bubble x up in place

9/8/21

11

