
9/8/21

Copyright 2000, Kevin Wayne 1

Heaps & Heapsort

1

Charles Babbage (1864) Analytic Engine (schematic)

Heaps, heap sort and priority queues

priority Queue: data structure that maintains a set S
of elements.

Each element v in S has a key key(v) that denotes the
priority of v.

Priority Queue provides support for
adding, deleting elements,
selection / extraction of

smallest (Min prioQ) or largest (Max prioQ) key
element,

changing key value.

9/8/21

Copyright 2000, Kevin Wayne 2

Applications

E.g. used in managing real time events where we
want to get the earliest next event and events
are added / deleted on the fly.

Sorting
■ build a prioQ
■ Iteratively extract the smallest element

PrioQs can be implemented using heaps

Heaps
Heap: array representation of a complete
binary tree
■ every level is completely filled

except the bottom level: filled from
left to right

■ Can compute the index of parent and
children: WHY?
– parent(i) = floor((i-1)/2)

leftChild(i)= 2i+1
rightChild(i)=2(i+1)

Max Heap property:
for all nodes i>0: A[parent(i)] >= A[i]
Max heaps have the max at the root

Min heaps have the min at the root

16

10

9 3

142

78

14

16 14 10 8 7 9 3 2 4 1
0 1 2 3 4 5 6 7 8 9

9/8/21

Copyright 2000, Kevin Wayne 3

Heapify(A,i,n)

To create a heap at index i, assuming left(i) and right(i) are
heaps, bubble A[i] down: swap with max child until heap
property holds

heapify(A,i,n):
precondition
n is the size of the heap
tree left(i) and tree right(i) are heaps

…….

postcondition: tree A[i] is a heap

Swapping Down

6

Swapping down enforces (max) heap property at the
swap location:

new<x and y<x: x>y and x>new
swap(x,new)

Are we done now?

x

new y

new

xy

NO! When we have swapped we need to carry
on checking whether new is in heap position. We
stop when that is the case.

9/8/21

Copyright 2000, Kevin Wayne 4

Heap Extract
Heap extract:

Delete (and return) root
Step 1: replace root with last array element to keep

completeness
Step 2: reinstate the heap property
Which element does not necessarily have the heap
property?

How can it be fixed? Complexity?
heapify the root O(log n)

Swap down: swap with maximum (maxheap), minimum
(minheap) child as necessary, until in place.

Sometimes called bubble down

Correctness based on the fact that we started with a heap,
so the children of the root are heaps

7

Heap Insert
Step 1: put a new value into first open position
(maintaining completeness), i.e. at the end of the
array, but now we potentially violated the heap
property, so:

Step 2: bubble up

■ Re-enforcing the heap property

■ Swap with parent, if new value > parent, until in the
right place.

■ The heap property holds for the tree below the new
value, when swapping up. WHY? We only compared the
new element to the parent, not to the sibling!

8

9/8/21

Copyright 2000, Kevin Wayne 5

Swapping up

9

Swapping up enforces heap property for the sub tree below
the new, inserted value:

new

x y

x

newy

if (new > x) swap(x,new) x>y, therefore new > y

Building a heap

heapify performs at most lg n swaps

why? what is n?

buildheap: builds a heap out of an array:

■ the leaves are all heaps WHY?
■ heapify backwards starting at last internal node

WHY backwards?
WHY last internal node?

which node is that?

9/8/21

Copyright 2000, Kevin Wayne 6

1142

78

4

LERT’S DO THE BUILDHEAP!

1142

78

4

182

714

4

182

74

14

142

78

14

[4, 8, 7, 2, 14, 1]

Complexity buildheap

Suggestions? ...

9/8/21

Copyright 2000, Kevin Wayne 7

Complexity buildheap

Initial thought: O(n lgn), but

half of the heaps are height 0
quarter are height 1
only one is height log n

It turns out that O(n lgn) is not tight!

complexity buildheap

height

0

1

2

3

max #swaps ?

9/8/21

Copyright 2000, Kevin Wayne 8

complexity buildheap

height

0

1

2

3

max #swaps, see a pattern?
(What kind of growth function do you expect ?)

0

1

2*1+2 = 4

2*4+3 = 11

complexity buildheap

height

0

1

2

3

max #swaps

0 = 21-2

1 = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5

9/8/21

Copyright 2000, Kevin Wayne 9

complexity buildheap

height

0

1

2

3

max #swaps

0 = 21-2

1 = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5

Conjecture:
height = h
max #swaps = 2h+1-(h+2)

Proof: induction
base?
step:
height = (h+1)
max #swaps:

2*(2h+1-(h+2))+(h+1)
= 2h+2-2h-4+h+1
= 2h+2-(h+3)
= 2(h+1)+1-((h+1)+2)

n nodes àQ(n) swaps

See it the Master theorem way

T(n) = 2*T(n/2)+ lg n

Master theorem

18

Θ(n lg2 2) =Θ(n)

9/8/21

Copyright 2000, Kevin Wayne 10

Heapsort, complexity

heapsort(A):
buildheap(A) # O(n)
for i = n-1 downto 1 : # O((n)

put max at end array

max is removed from heap
n=n-1

reinstate heap property # * (lg n))

- heapify: Q(lgn)
- heapExtract: Q(lg n)
- buildheap: Q(n)
- heapsort: Q(n lg n)
- space: in place: Q(n)

142

78

14

1412

74

8

1482

14

7

1487

12

4

14874

1

2

DO THE HEAPSORT, DO IT, DO IT!

14874

1

2 148741 2

9/8/21

Copyright 2000, Kevin Wayne 11

How not to heapExtract, heapInsert

21

These "snail" implementations are NOT preserving the algorithm
complexity of extractMin: log n and insert: log n and are therefore
INCORRECT! from a complexity point of view (even though they are
functionally correct). Remember one of the goals of our course:
implementing the algorithms maintaining the analyzed complexity
What are their complexities?

def snailExtractMin(A):
n = len(A)
if n == 0:
return None

min = A[0]
A[0]=A[n-1]
A.pop()
buildHeap(A) # O(n)
return min

def snailInsert(A,v):
A.append(v)
buildHeap(A) # O(n)

Priority Queues

heaps can be used to implement priority queues:

■ each value associated with a key
■ max priority queue S has operations that maintain

the heap property of S
– max(S) returning max element
– Extract-max(S) extracting and returning max
element

– increase key(S,x,k) increasing the key value of x
– insert(S,x)
• put x at end of S
• bubble x up in place

