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Heaps & Heapsort
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Charles Babbage (1864) Analytic Engine (schematic)

Heaps, heap sort and priority queues

priority Queue: data structure that maintains a set S 
of elements.

Each element v in S has a key key(v) that denotes the 
priority of v.

Priority Queue provides support for
adding, deleting elements, 
selection / extraction of 

smallest (Min prioQ) or largest (Max prioQ) key 
element,    

changing key value.



9/8/21

Copyright 2000, Kevin Wayne 2

Applications

E.g. used in managing real time events where we 
want to get the earliest next event and events 
are added / deleted on the fly.

Sorting
■ build a prioQ
■ Iteratively extract the smallest element

PrioQs can be implemented using heaps

Heaps
Heap: array representation of a complete
binary tree
■ every level is completely filled

except the bottom level: filled from 
left  to right

■ Can compute the index of parent and 
children:   WHY?
– parent(i) = floor((i-1)/2)

leftChild(i)= 2i+1
rightChild(i)=2(i+1)

Max Heap property:
for all nodes i>0:  A[parent(i)] >= A[i]
Max heaps have the max at the root

Min heaps have the min at the root
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Heapify(A,i,n)

To create a heap at index i, assuming left(i) and right(i) are
heaps, bubble A[i] down: swap with max  child until heap
property holds

heapify(A,i,n):
# precondition
# n is the size of the heap
# tree left(i) and tree right(i) are heaps

……. 

# postcondition:  tree A[i] is a heap 

Swapping Down

6

Swapping down enforces (max) heap property at the 
swap location: 

new<x  and y<x:          x>y and x>new
swap(x,new)

Are we done now?

x

new y

new

xy

NO! When we have swapped we need to carry 
on checking whether new is in heap position. We 
stop when that is the case.
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Heap Extract
Heap extract: 

Delete (and return) root
Step 1:  replace root with last array element to keep 

completeness
Step 2:  reinstate the heap property
Which element does not necessarily have the heap 
property?

How can it be fixed?       Complexity?
heapify the root       O(log n)

Swap down: swap with maximum (maxheap), minimum   
(minheap) child as necessary, until in place. 

Sometimes called bubble down

Correctness based on the fact that we started with a heap, 
so the children of the root are heaps

7

Heap Insert
Step 1: put a new value into first open position 
(maintaining completeness), i.e. at the end of the 
array, but now we potentially violated the heap 
property, so:

Step 2: bubble up

■ Re-enforcing the heap property

■ Swap with parent, if new value > parent,  until in the 
right place.

■ The heap property holds for the tree below the new 
value,  when swapping up. WHY? We only compared the 
new element to the parent, not to the sibling!

8
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Swapping up
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Swapping up enforces heap property for the sub tree below 
the new, inserted value: 

new

x y

x

newy

if (new > x) swap(x,new)                         x>y, therefore  new > y 

Building a heap

heapify performs at most lg n swaps

why?  what is n?

buildheap:  builds a heap out of an array:

■ the leaves are all heaps WHY?
■ heapify backwards starting at last internal node

WHY backwards?
WHY last internal node?

which node is that?
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LERT’S DO THE BUILDHEAP!  
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[4, 8, 7, 2, 14, 1]

Complexity buildheap

Suggestions? ...
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Complexity buildheap

Initial thought: O(n lgn), but

half of the heaps are height 0
quarter are height 1
only one is height log n

It turns out that O(n lgn) is not tight!

complexity buildheap

height
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max #swaps ?
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complexity buildheap

height

0

1

2

3

max #swaps, see a pattern?
(What kind of growth function do you expect ?)
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2*1+2 = 4

2*4+3 = 11 

complexity buildheap

height
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0  = 21-2

1  = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5
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complexity buildheap

height

0

1

2

3

max #swaps

0  = 21-2

1  = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5

Conjecture: 
height = h
max #swaps = 2h+1-(h+2)

Proof: induction
base?
step:
height = (h+1)
max #swaps: 

2*(2h+1-(h+2))+(h+1)
= 2h+2-2h-4+h+1
= 2h+2-(h+3)
= 2(h+1)+1-((h+1)+2)  

n nodes àQ(n) swaps 

See it the Master theorem way

T(n) = 2*T(n/2)+ lg n

Master theorem 

18

Θ(n lg2 2 ) =Θ(n)
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Heapsort, complexity

heapsort(A):
buildheap(A)      # O( n )
for i = n-1 downto 1 :                #    O( ( n )

# put max at end array

# max is removed from heap
n=n-1

# reinstate heap property     #         * ( lg n)  )

- heapify: Q(lgn)
- heapExtract: Q(lg n)
- buildheap:  Q(n)
- heapsort:   Q(n lg n)
- space: in place: Q(n)
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DO THE HEAPSORT, DO IT, DO IT!
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How not to heapExtract, heapInsert

21

# These "snail" implementations are NOT preserving the algorithm 
# complexity of extractMin: log n and insert: log n and are therefore
# INCORRECT! from a complexity point of view  (even though they are
# functionally correct). Remember one of the goals of our course:
#    implementing the algorithms maintaining the analyzed complexity
# What are their complexities?

def snailExtractMin(A):
n = len(A)
if n == 0:
return None

min = A[0]
A[0]=A[n-1]
A.pop()
buildHeap(A)   #  O(n)
return min

def snailInsert(A,v):
A.append(v)
buildHeap(A)  #   O(n)

Priority Queues

heaps can be used to implement priority queues:

■ each value associated with a key
■ max priority queue S has operations that maintain 

the heap property of S
– max(S)  returning max element
– Extract-max(S) extracting and returning max 
element

– increase key(S,x,k)  increasing the key value of x
– insert(S,x)
• put x at end of S
• bubble x up in place


