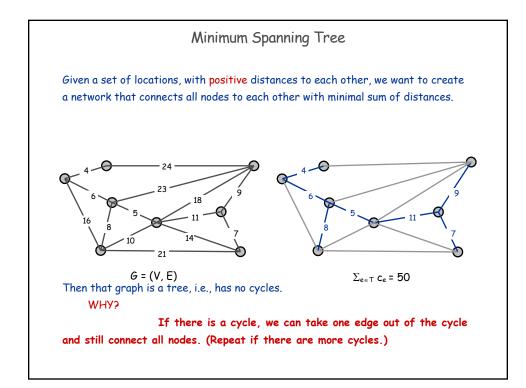
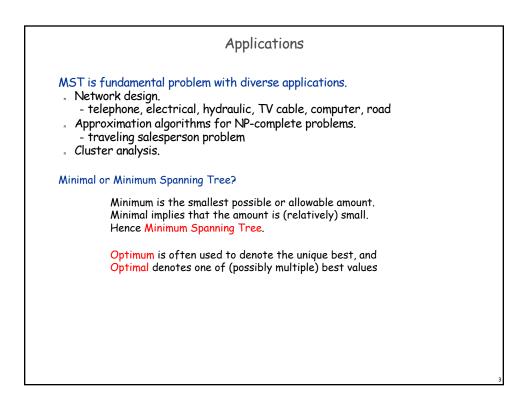
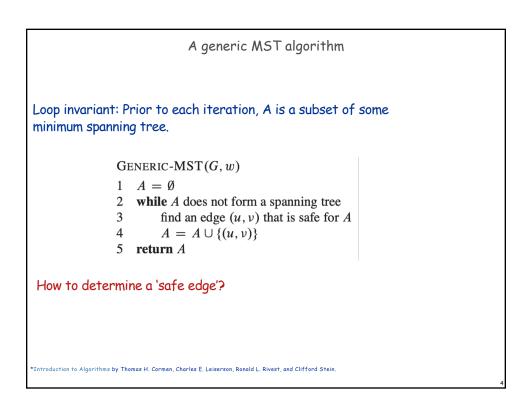


Cormen et. al. VI 23,24





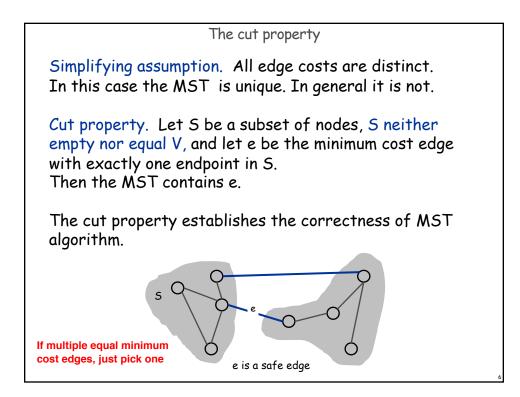


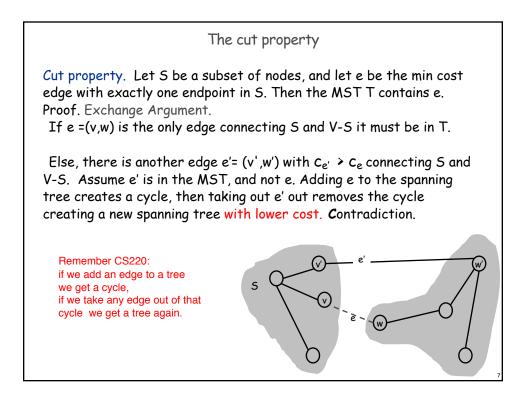
Three Greedy Algorithms for MST

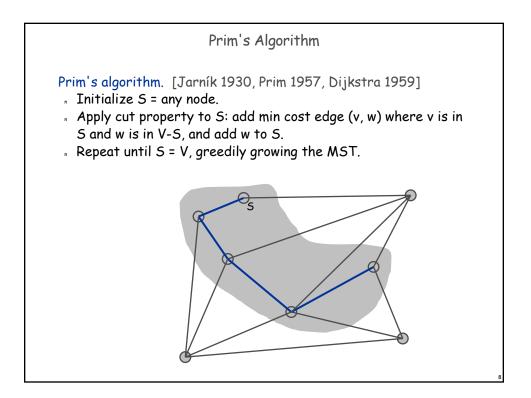
Kruskal's algorithm. Start with $T = \phi$. Consider edges in ascending order of cost. Add edge e to T unless doing so would create a cycle.

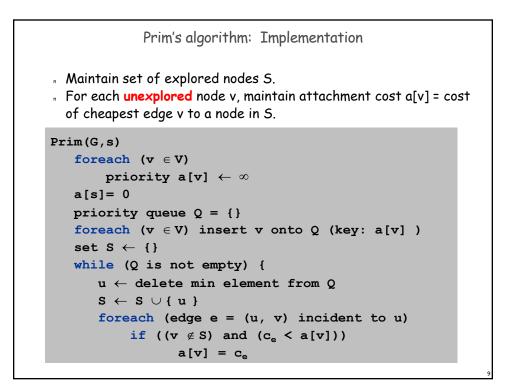
Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

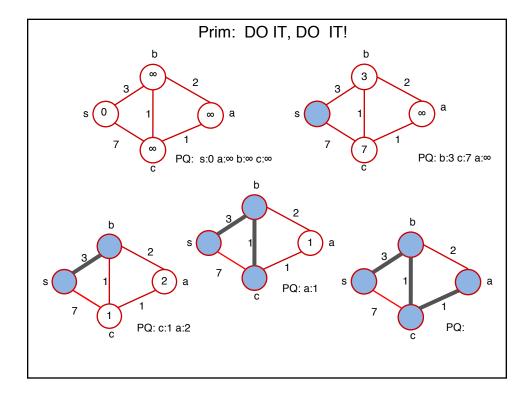
Prim's algorithm. Start with some node s and greedily grow a tree T from s. At each step, add the cheapest edge e to T that has exactly one endpoint in T, i.e., without creating a cycle.

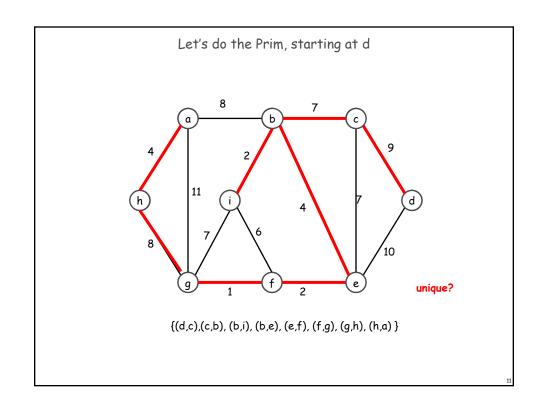


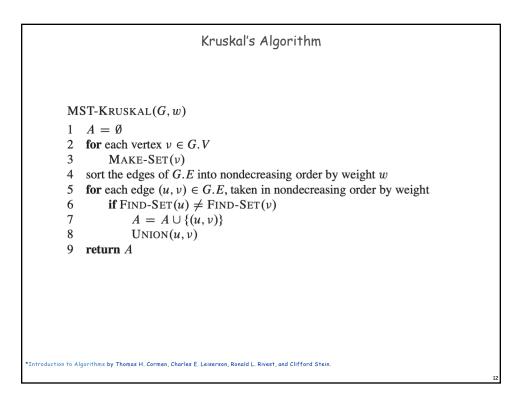


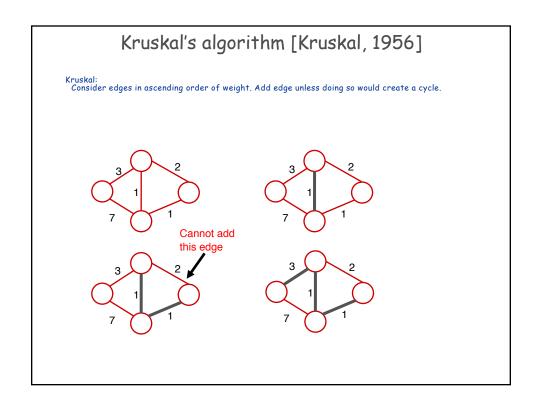


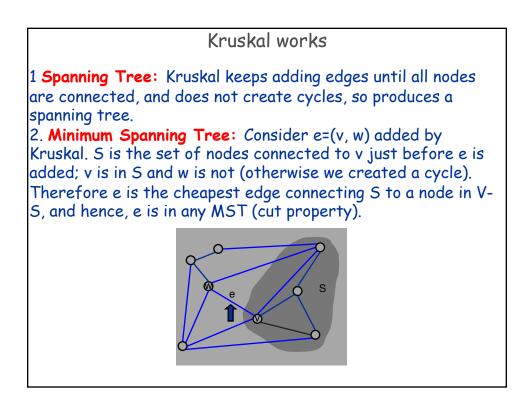


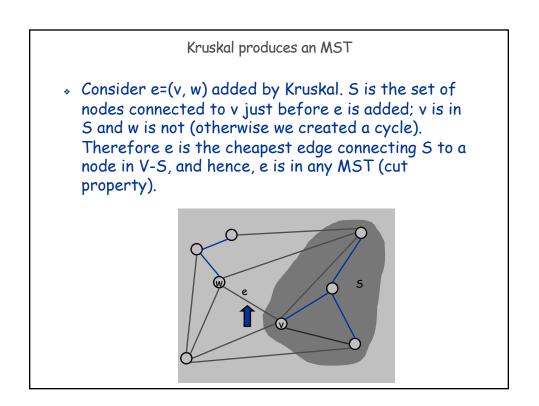


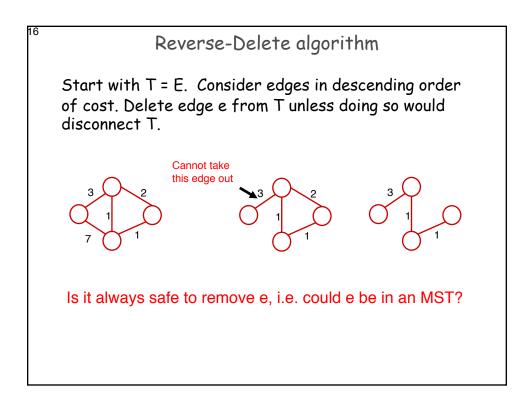










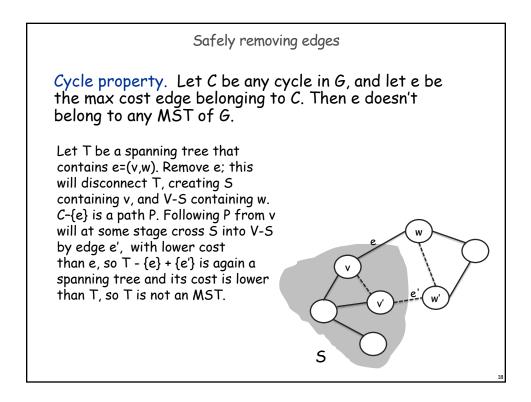


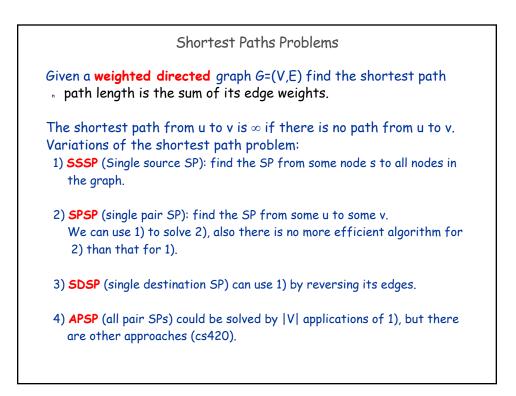
Reverse-Delete algorithm

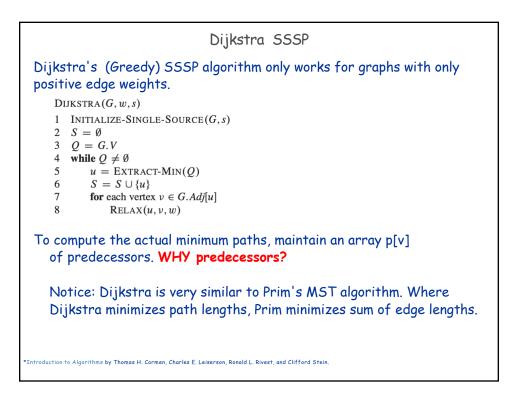
Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

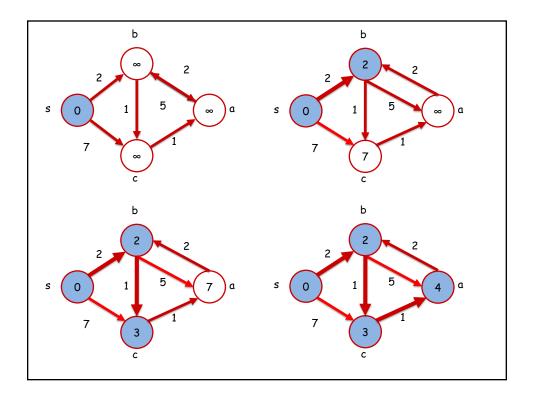
Is it safe to remove e, i.e. could e be in an MST?

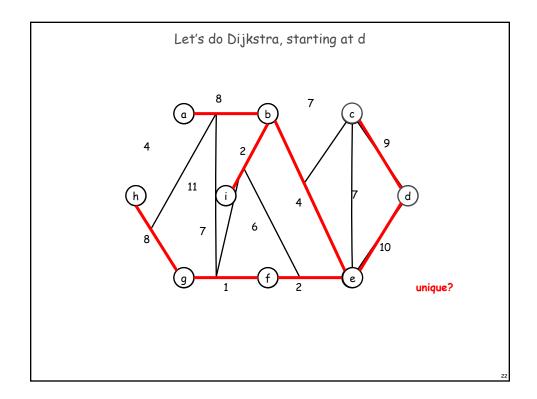
Cycle property. Let C be any cycle in G, and let e be the max cost edge belonging to C. Then e doesn't belong to any MST of G.

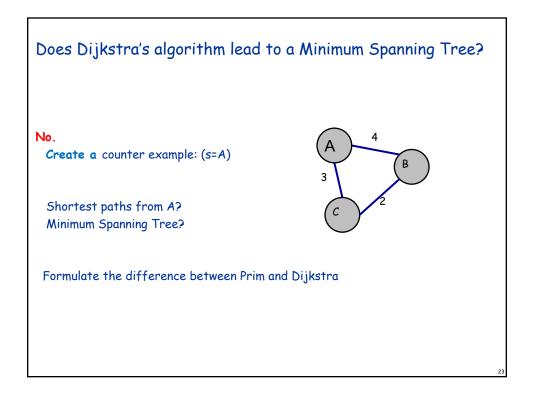












Dijkstra works
For each u in S, the path P _{s,u} is the shortest (s,u) path
Proof by induction on the size of S
Base: 5 = 1 d[s]=0 OK
Step: Suppose it holds for S =k>=1, then grow S by 1 adding node v using edge (u,v) (u already in S) to create the next S. Then path P _{s,u,v} is path P _{s,u} +(u,v), and is the shortest path to v
WHY? What are the "ingredients" of an exchange argument? What are the inequalities?

