Colorado State University

CS 320 Fall 2021 Solving recurrences for divide & conquer

Sanjay Rajopadhye
Colorado State University

Divide & Conquer

- Break up the problem into (multiple, smaller) parts
- Solve each of the parts recursively
- Combine the solution of each of the parts into a solution of the original problem

First example: Merge sort Divide the array into two halves ■ Recursively sort each half Merge the two sorted halves John von Neumann (1945) **Analysis** T H M S Divide 0(1)Merge O(n)T H M S A L G O R What about the A G L O R recursive calls? A G H I L M O R S T $2T\left(\frac{n}{2}\right)$ Colorado State University 3

Complexity of merge Time: O(n)Space: O(n)Often with two arrays of length n Can you do (a constant factor) better? Colorado State University 4

Recurrence relations

- A recurrence relation for a sequence, $\{a_n\}$ is and equation that expresses a_n in terms of one or more of the previous elements of the sequence, $a_1, a_2, \dots a_{n-1}$
- There may be base cases, and the equation hold for $n \ge n_0$ for some constant n_0
 - Example: $a_n = 2a_{n-1} + 1$ and $a_1 = 1$
 - After setting up the recurrence relation, we solve it

Colorado State University 6

Recurrence relation for Merge-sort

- Define the number of comparisons to sort an input of length n as: T(n)
- Use the structure of the D&C algorithm to define an equation/relation for T(n)

$$T(n) \le \begin{cases} c & \text{if } n = 1\\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + cn & \text{otherwise} \end{cases}$$

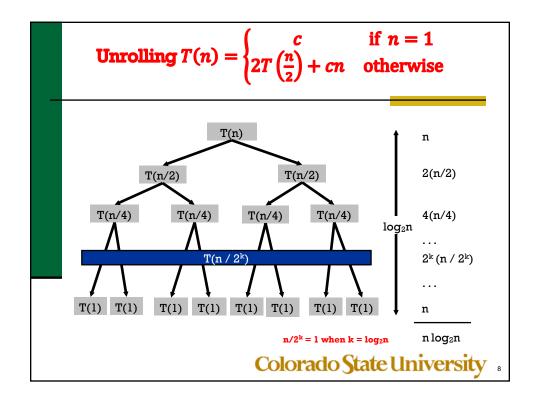
Solving the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + cn & \text{otherwise} \end{cases}$$

Solution:

$$T(n) = \Theta(n \log n)$$

- Number of techniques
 - Unrolling the recurrence
 - Repeated substitution
 - See a pattern, guess and then prove by induction



Seeing the pattern

- What is the "label" of each node?
- When does the label become "small enough" (base case)
- How many levels in the tree? [Hint: use the above two]
- How many nodes at each level?
- What is the "contribution" of each node?
- What is the contribution of each level?
- How many leaves?
- Contribution of the leaves (different from contribution of other levels)

Colorado State University .

Repeated substitution for
$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(\frac{n}{2}) + cn & \text{otherwise} \end{cases}$$

Claim: $T(n) = cn \log_2 n$

$$T(n) = 2T(n/2) + cn$$

$$= 4T(n/4) + cn + 2cn/2$$

$$= 8T(n/8) + cn + cn + 4cn/4$$
...
$$= 2^{\log_2 n}T(1) + \underbrace{cn + \dots + cn}_{\log_2 n}$$

$$= O(n\log_2 n)$$
This reaches T(1) when
$$n = 2^{\log_2 n}$$
by definition of log₂n

Towers of Hanoi

- Move all disks to third peg, without ever placing a larger disk on a smaller one.
- What's the recurrence relation? $a_n = 2a_{n-1} + 1$ with the base case that $a_1 = 1$
- Let's solve by repeated substitution
 - Plug in the definition
 - Do the algebra to collect all the non-recursive expressions together
 - Identify a pattern
 - Determine how many times the pattern occurs until we hit the base case

Colorado State University 11

Hanoi by repeated substitution

$$T(n) = 2T(n-1) + 1$$

$$= 2(2T(n-2) + 1) + 1$$

$$= 4T(n-2) + 2 + 1$$

$$= 4(2T(n-3) + 1) + 2 + 1$$

$$= 8T(n-3) + 4 + 2 + 1$$

- What is the label and how is it changing?
- What about the other terms?
- When do we hit the base case?

Hanoi by repeated substitution

$$T(n) = 2T(n-1) + 1$$

$$= 2(2T(n-2) + 1) + 1$$

$$= 4T(n-2) + 2 + 1$$

$$= 4(2T(n-3) + 1) + 2 + 1$$

$$= 8T(n-3) + 4 + 2 + 1$$

$$\vdots$$

$$= 2^{i}T(n-i) + \sum_{j=0}^{i-1} 2^{j}$$

- When does the label become 1?
- When i = n 1 So our solution is

Colorado State University 13

Hanoi by repeated substitution

$$T(n) = 2^{n-1}T(1) + \sum_{j=0}^{n-2} 2^{j}$$

$$= \sum_{j=0}^{n-1} 2^j = 2^n - 1 = \Theta(2^n)$$

■ This is a geometric series

Binary search

```
function BS(x, start, end)
  if (end <= start)
    return A[start]
  mid = (end + start)/2
  if A[mid] < x
    return BS(x, mid, end)
  return BS(x, start, mid-1)</pre>
```

- What is the recurrence?
- Apply repeated substitution (on doc cam or exercise)

Colorado State University 15

Find max in an unsorted array

Algorithm:

- Base case n=1
- Otherwise: find the max of the two halves, and return the max of that

```
function FM(start, end)
  if (end = start)
    return A[start]
  mid = (end + start)/2
  return max( FM(start, mid-1), FM(mid, end) )
```

Find max in an unsorted array

Recurrence: base case: T(1) = 0Otherwise: $T(n) = 2T\left(\frac{n}{2}\right) + 1$ $= 4T\left(\frac{n}{4}\right) + 2 + 1$

 $= 8T\left(\frac{n}{8}\right) + 4 + 2 + 1$ \vdots

 $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2^{k-1} + 2^{k-2} + \dots + 2^{0}$ $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2 \cdot 2^{k-1} - 1$ $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2^{k} - 1$

Bae case is reached when $2^k = n$, i.e., $k = \log_2 n$, So $T(n) = 0 + 2^{\log n} - 1 = n - 1$

Colorado State University 17

Another example

function foo(A, B) // the size of A is n
 if (n == 1):
 return fuzz(A, B) // base case, fuzz is
constant time

// Process A to build two parts, A_{0} and A_{1} of size n/2 each

 $C_0 = \text{foo } (A_0, B)$ $C_1 = \text{foo } (A_0, B)$ return buzz(C_0, C_1) // buzz is $O(n^2)$

General D&C

```
function foo(parameters) // the size of A is n
  if (n <= b): // base case
  return fuzz(A, B) // base case
// Divide input into a parts, each of size n/b
  divide()
// Make a calls to
  foo(new parameters) // size is n/b
  return combine(r<sub>1</sub>, r<sub>a</sub>)
// Complexity of divide and combine is O(n<sup>d</sup>)
```

Colorado State University

Master Theorem

- Let $a \ge 1, b > 1, n = b^k$ and T(n) be given by $T(n) = aT\left(\frac{n}{b}\right) + cn^d$
- The solution of the recurrence is

$$T(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Merge-sort by master theorem

- a = 2, b = 2, d = 1
- **So,** $b^d = 2 = a$

... and the solution is

$$T(n) = O(n^d \log n) = O(n \log n)$$