
10/10/21

Copyright 2000, Kevin Wayne 1

Divide and Conquer: Counting Inversions

Rank Analysis

■ Collaborative filtering
– matches your preference (books, music, movies,
restaurants) with that of others

– finds people with similar tastes
– recommends new things to you based on purchases
of these people

■ The basis of collaborative filtering:
compare the similarity of two rankings

10/10/21

Copyright 2000, Kevin Wayne 2

What's similar?

Given numbers 1 to n (the things) rank these
according to your preference
■ You get some permutation of 1..n
■ Compare to someone else's permutation

Extreme similarity
■ somebody else's ranking is exactly the same

Extreme dissimilarity
■ somebody else's ranking is exactly the opposite

In the middle:
■ count the number of out of place rankings

Simplify it
Count the number of inversions of a ranking
■ r1, r2, ... ,rn

■ count the number of out of order pairs
• i<j ri>rj

■ eg: 2 1 4 3 5 2 inversions: (2,1) (4,3)

Why is this synonymous with comparing two different
rankings?

Because we can re-number the things, such that one of
the rankings (e.g. my ranking) becomes 1,2,...,n
my ranking: 1,2,...,5 your ranking 2,1,4,3,5
your #1 is my #2, your #2 is my #1
your #3 is my #4, your #4 is my #3

10/10/21

Copyright 2000, Kevin Wayne 3

Visualizing inversions

5

zero inversions 1 2 3 4 5

1 2 3 4 5

one inversion 2 1 3 4 5

1 2 3 4 5

Visualizing inversions

6

how many? 3 2 1 4 5
enumerate them

1 2 3 4 5

5 2 3 4 1

1 2 3 4 5

3: (3,1) (3,2) (1,2)

7: (5,2) (5,3), (5,1) (5,4)
(1,4) (1,3) (1,2)

all lines crossing!

Careful: don’t count inversions twice!

10/10/21

Copyright 2000, Kevin Wayne 4

Sort

Does Bubble sort count inversions?
Bubble sort is O(n2)

Do it on: 4 2 3 5 1 and see what happens

4 2 3 5 1

1 2 3 4 5

Do bubble sort, show each swap, count inversions

4 2 3 5 1

1 2 3 4 5

1 2 3 4 5

2 4 3 5 1

1 2 3 4 5

2 3 4 5 1

1 2 3 4 5

2 3 4 1 5

1 2 3 4 5

2 3 1 4 5

1 2 3 4 5

2 1 3 4 5

1 2 3 4 5

every swap takes out 1 inversion, and thus 1 line crossing

10/10/21

Copyright 2000, Kevin Wayne 5

Can we do better?

Notice: there are potentially n*(n-1)/2 inversions. WHY?

Bubble sort counts each individual swap = inversion.To do
better we must not count each individual inversion.

Think of merge sort

■ in merge sort we do not swap consecutive elements that are out
of order as in bubble sort, we make larger distance swaps

■ if we can merge sort and keep track of the number of inversions
we may get an O(n log n) algorithm

■ Key observation: when an element from right is merged in, it
“jumps” over all remaining elements of left !!

Reverse order, all pairs are out of orders

Eg: [4 2 3 5 1]

sort [4 2 3 5 1]

■ sort LEFT: [4 2 3]
– sort left: [4 2] à [2 4]:1 inversion
– sort right: [3]
– merge(left,right) à [2 3 4] 1 inversion (3 jumps over 4)

■ sort RIGHT: [5 1] à [1 5] 1 inversion

■ merge(LEFT,RIGHT) à[1 2 3 4 5]
3 inversions (1 jumps over 2,3 & 4)

Total inversions: 1+1+1+3=6 (go check the visualization)

10/10/21

Copyright 2000, Kevin Wayne 6

The algorithm

While merging in merge sort keep track of the
number of inversions.
When merging an element from left: no
inversions added
When merging an element from right: how
many inversions added?

merge result

lefti ...

rightj ...

As many elements as are remaining in left,
because the element from the right jumps over
all the remaining elements from left

12

Counting Inversions: Algorithm

count_inversions(list)
if list has one element

return 0
divide list into two halves A and B
rA = count_inversions(A)
rB = count_inversions(B)
rm = merge-and-count(A, B, list)
return rA + rB + rm

merge-and-count(L, R, list)
count = 0
while L and R not empty:

put smallest of Li and Rj in list
if Rj smallest

add number of elements remaining in L to count
if L or R empty:

append the other one to list
return count

10/10/21

Copyright 2000, Kevin Wayne 7

Running time

Just like merge sort, the sort and count algorithm
running time satisfies:

T(n) = 2 T(n / 2) + cn

Running time is therefore O(n log n)

13

