## Making Change

## Making Change

Goal. Given currency coin denominations, e.g., $\{100,25,10,5,1\}$ devise a method to pay an integer amount using the fewest coins.

Example: 34\$.


Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Example:
$\$ 2.89=289 \$$.


100, 100,
$25,25,25,10$,


## Greedy Algorithm

Cashier's algorithm. Use the maximal number of the largest denomination coin

```
x - amount to be changed
Sort coins denominations by value: cc
S empty < coins selected
while (x > 0) {
    let k be largest integer such that cok s x
        if (k == 0) # all ck > x
        return "no solution found"
        x}\leftarrow\mathbf{x}-\mp@subsup{C}{k}{
        append(S,k)
}
return S
```

Does this Greedy algorithm always work?

## Greedy doesn't always work

1. Greedy fails changing 30 optimally with coin set $\{25,10,1\}$ as it produces $[25,1,1,1,1,1]$ instead of [10,10,10]
2. Greedy fails changing 30 at all with coin set $\{25,10\}$ even though there is a solution: $[10,10,10]$
3. But the Greedy algorithm works for US coin set Proof: number theory (canonical coin systems)

## Different problem: number of ways to pay

Given a sorted coin set coins $=\left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\} c_{0}$ the smallest coin value, and $c_{d-1}$ the largest coin value, and an amount $M$
how many different ways can $M$ be paid?
One possible recursive either / or solution: go backwards through coins and choose to use the largest remaining coin or not
$m k C h(n, c)$ :
\# n: amount still to be paid
\# c: index of coins value currently considered
Base:
if $c==0$, how many ways? (is there always a way ?)
Step:
if $c>0$
if largest coin cannot be used: consider coin $\mathrm{c}_{\mathrm{c} 1}$ else: \# it can be used
either use one coin ${ }_{c}$ and keep considering $\operatorname{coin}_{c}$
or don't use coin ${ }_{c}$ and thus consider coin $_{c-1}$

## Make change vs. knapsack

## Recurrence:

ways(amount, i) =

1. Base case?
2. If amount < coin[i]: ways(i-1, amount)
3. Else: ways(amount-coin[i],i) + ways(amount, i-1)

Making change is very similar to knapsack, but:

1. We take the sum, not the maximum, of the two options.
2. We must use the same coin value a number of times. How this is reflected in the recurrence?

## Example of the recursive solution

coins $=[1,5,10,25] M=29$


Complete this call tree

## Making Change Dynamic Programming

Go through the state space bottom-up: $\mathrm{i}=0$ to $\mathrm{n}-1$

- select coin type
- first 1 coin type, then 1\&2, ......, finally all coin types
- what does the first column look like?
- use solutions of smaller sub-problems to compute solutions of larger ones by storing previous values. Which values do you need to preserve?



## Programming Assignment

1. Write a recursive mkChange function based on the either or choices from slide 6, then turn it into a Dynamic Programming function.

- Do you need a 2 D table here?

2. Determine the performance of the two algorithms. Later, in a written assignment, you will plot your data, and infer O complexity:

- Recursive: count number of calls
- Dynamic programming: count number of table reads

