Divide and Conquer: Counting Inversions
Rank Analysis

- **Collaborative filtering**
 - matches your preference (books, music, movies, restaurants) with that of others
 - finds people with similar tastes
 - recommends new things to you based on purchases of these people

- **Meta-search tools**
 - same query to many search engines
 - synthesize result by looking for similarities of resulting rankings

- The basis: compare the *similarity of two rankings*
What's similar?

Given numbers 1 to n (the things) rank these according to your preference
- You get some permutation of 1..n
- Compare to someone else's permutation

Extreme similarity
- somebody else's ranking is exactly the same

Extreme dissimilarity
- somebody else's ranking is exactly the opposite

In the middle:
- count the number of out of place rankings
Simplify it

Count the number of inversions of a ranking

- \(r_1, r_2, \ldots, r_n \)

- count the number of out of order pairs
 - \(i < j \quad r_i > r_j \)

eg: 2 1 4 3 5 2 inversions: (2,1) (4,3)

Why is this synonymous with comparing two different rankings?

Because we can re-number the things, such that one of the rankings (e.g. my ranking) becomes 1,2,...,n

my ranking: 1,2,...,5 your ranking 2,1,4,3,5

your #1 is my #2, your #2 is my #1
your #3 is my #4, your #4 is my #3
Visualizing inversions

zero inversions

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\mid & \mid & \mid & \mid & \mid \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

one inversion

\[
\begin{array}{cccccc}
2 & 1 & 3 & 4 & 5 \\
\times & \mid & \mid & \mid & \mid \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
Visualizing inversions

how many? 3 2 1 4 5
enumerate them

1 2 3 4 5

3: (3,1) (3,2) (1,2)

5 2 3 4 1

7: (5,2) (5,3), (5,1) (5,4) (1,4) (1,3) (1,2)

all line crossing!

Careful: don’t count inversions twice!
Does Bubble sort count inversions?
Selection sort?
Insertion sort?
These are \(O(n^2) \)

Do these sorts on:
and see what happens
Do bubble sort, show each swap, count inversions

every swap takes out 1 inversion, and thus 1 line crossing
Can we do better?

Notice: there are potentially \(n(n-1)/2 \) inversions. **WHY?**
Reverse order, all pairs are out of orders

Bubble sort counts each individual swap = inversion. To do better we must not count each individual inversion.

Think of merge sort

- in merge sort we do not swap consecutive elements that are out of order as in bubble sort, we make larger distance swaps
- if we can merge sort and keep track of the number of inversions we may get an \(O(n \log n) \) algorithm
Eg: [4 2 3 5 1]

sort [4 2 3 5 1]

- **sort LEFT**: [4 2 3]
 - sort left: [4 2] → [2 4]: 1 inversion
 - sort right: [3]
 - merge(left,right) → [2 3 4] 1 inversion (3 jumps over 4)

- **sort RIGHT**: [5 1] → [1 5] 1 inversion

- **merge(LEFT,RIGHT)** → [1 2 3 4 5]
 3 inversions (1 jumps over 2, 3 & 4)

Total inversions: 1+1+1+3=6 (go check the visualization)
The algorithm

While merging in merge sort keep track of the number of inversions. When merging an element from left: no inversions added. When merging an element from right: how many inversions added?

As many elements as are remaining in left, because the element from the right jumps over all the remaining elements from left.
Counting Inversions: Algorithm

count_inversions(list)
 if list has one element
 return 0
 divide list into two halves A and B
 r_A = count_inversions(A)
 r_B = count_inversions(B)
 r_m = merge-and-count(A, B, list)
 return r_A + r_B + r_m

merge-and-count(L, R, list)
 count = 0
 while L and R not empty:
 put smallest of Li and Rj in list
 if Rj smallest
 add number of elements remaining in L to count
 if L or R empty:
 append the other one to list
 return count
Running time

Just like merge sort, the sort and count algorithm running time satisfies:

\[T(n) = 2 \ T(n / 2) + cn \]

Running time is therefore \(O(n \log n) \)
Merge and Count

Merge and count step.
- Combine two sorted halves into sorted whole.

\[\begin{array}{cccccccc}
3 & 7 & 10 & 14 & 18 & 19 \\
\downarrow & & & & & & & \\
2 & 11 & 16 & 17 & 23 & 25 \\
\text{Total: 6} \\
\end{array} \]
Merge and Count

Merge and count step.
- Combine two sorted halves into sorted whole.

```
3  7  10  14  18  19
  ↓
```

```
2  11  16  17  23  25
  ↓
```

two sorted halves

```
2  3
```

auxiliary array

Total: 6
Merge and count step.

- Combine two sorted halves into sorted whole.

Total: 6
Merge and Count

Merge and count step.
- Combine two sorted halves into sorted whole.
Merge and count step.

- Combine two sorted halves into sorted whole.

```
3  7  10  14  18  19

2  11  16  17  23  25
   6   3

2  3  7  10  11
```

Total: 6 + 3
Merge and Count

Merge and count step.
- Combine two sorted halves into sorted whole.

![Diagram](image)

- Two sorted halves:
 - 3 7 10 14 18 19
 - 2 11 16 17 23 25

- Auxiliary array:
 - 2 3 7 10 11 14

- Total: $6 + 3$
Merge and Count

Merge and count step.

- Combine two sorted halves into sorted whole.

```
3  7  10  14  18  19
```

```
2  11 16  17  23  25
```

Two sorted halves

```
2  3  7  10  11  14  16
```

Auxiliary array

Total: $6 + 3 + 2$
Merge and Count

Merge and count step.

- Combine two sorted halves into sorted whole.

```
3  7  10  14  18  19
  ↓             ↓
2  11  16  17  23  25
  6  3  2  2
```

Two sorted halves

```
2  3  7  10  11  14  16  17
```

Auxiliary array

Total: 6 + 3 + 2 + 2
Merge and Count

Merge and count step.
- Given two sorted halves, count number of inversions where a_i and a_j
- Combine two sorted halves into sorted whole.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>18</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>2</th>
<th>11</th>
<th>16</th>
<th>17</th>
<th>23</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Total: $6 + 3 + 2 + 2$
Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

![Merge and Count Diagram]

Total: $6 + 3 + 2 + 2$
Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

```
first half exhausted

3  7  10  14  18  19

2  11  16  17  23  25

2  3  7  10  11  14  16  17  18  19

Total: 6 + 3 + 2 + 2
```
Merge and count step.
- Combine two sorted halves into sorted whole.

Total: $6 + 3 + 2 + 2 + 0$
Merge and count step.

- Combine two sorted halves into sorted whole.

Two sorted halves:

```
3  7  10  14  18  19
|---|---|---|---|---|
6   3   2   2   0   0
```

Auxiliary array:

```
2  3  7  10  11  14  16  17  18  19  23  25
|---|---|---|---|---|---|---|---|---|---|---|---|
```

Total: $6 + 3 + 2 + 2 + 0 + 0$