Divide and Conquer

Recurrence Relations
Divide-and-Conquer

Strategy:
- Break up problem into parts.
- Solve each part recursively.
- Combine solutions to sub-problems into the overall solution.
Merge Sort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make a sorted whole.

Jon von Neumann (1945)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
<th>G</th>
<th>O</th>
<th>R</th>
<th>I</th>
<th>T</th>
<th>H</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L</td>
<td>G</td>
<td>O</td>
<td>R</td>
<td>I</td>
<td>T</td>
<td>H</td>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>R</td>
<td>H</td>
<td>I</td>
<td>M</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

\[T(n) \]

- divide \(O(1) \)
- sort \(2T(n/2) \)
- merge \(O(n) \)
Complexity of merge

time

$O(n)$, WHY?

space

$O(n)$

Often done using a new size n array stepwise placing next smallest of left and right into the new array

It takes constant time (compare, write, increment indices) to move each of the n elements in its place.

Can you do it in less than $2n$ space?

1.5n still $O(n)$ space
A Recurrence Relation for Merge Sort

\(T(n) = \text{number of comparisons required to mergesort an input of size } n. \)

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
 c & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + cn & \text{otherwise}
\end{cases}
\]
A recurrence relation for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one of more of the previous terms of the sequence, namely, \(a_0, a_1, \ldots a_{n-1} \), for all integers \(n \) with \(n \geq n_0 \) where \(n_0 \) is a nonnegative integer.

A sequence is defined by a recurrence relation + initial conditions ("base cases")

Example, Merge sort: \[
\begin{align*}
a_n &= 2a_{n/2} + n \\
a_1 &= 1
\end{align*}
\]
A Recurrence Relation for Merge Sort

T(n) = number of comparisons required to mergesort an input of size n.

Mergesort recurrence.

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 T(n/2) + T(n/2) + cn & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n). \)

We assume \(n \) is a power of 2 and replace \(\leq \) with = (we only care about the order of magnitude)
Unrolling the recursion

\[T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{otherwise}
\end{cases} \]

by definition of log
Divide and Conquer

```python
def f(A):
    # |A| = n
    if n==1: return base(A)
    else:
        A_1,A_2,...,A_a = split(A)  # |A_i| = n/b
        C_1 = f(A_1)
        C_2 = f(A_2)
        ...
        C_a = f(A_a)
        return combine(C_1,C_2,...,C_a)
```

Time assumptions
- base() takes constant time
- split() + combine() takes \(n^d \) time

Time recurrence
\[
T(n) = a \cdot T(n/b) + n^d
\]
\[
= a \cdot (a \cdot T(n/b^2) + (n/b)^d) + n^d
\]
\[
= a^2 \cdot T(n/b^2) + a \cdot n^d/b^d + n^d
\]
\[
= a^2(aT(n/b^3) + (n/b^2)^d)) + a \cdot n^d/b^d + n^d
\]
\[
= a^3T(n/b^3) + a^2 \cdot n^d/b^{2d} + a \cdot n^d/b^d + n^d
\]
\[...
= a^k(T(n/b^k) + a^{k-1}n^d/b^{(k-1)d} + ... + a \cdot n^d/b^d + n^d
\]

This series ends when \(k = \log_b n \) \(n == b^{\log_b n} \)

This inductive process is called repeated substitution
Analyzing the process in a stepwise fashion

Each non-leaf node with $T(x)$ represents a call with a children with parameter size x/b (initially $x=n$) and time contribution x^d

- The number of nodes at level 0 is 1, at level 1: a
 the number of nodes at level i is? a^i
- The parameter size of at level 0 is n, at level 1: n/b
 the parameter size of nodes at level i is? n/b^i
- The time contribution at level 0 is n^d, at level 1: n^d/b^d
 the time contribution of one node at level i is? n^d/b^{di}
 the time contribution of all nodes at level i is? $a^i n^d/b^{di} = (a/b^d)^i n^d$
 the time contribution of the whole tree is? $n^d \sum (a/b^d)^i$

remember geometric series: $\sum_{i=0}^{k} r^i = \frac{r^{k+1}-1}{r-1}$ \hspace{1cm} r$\neq 1$

$= k+1 \hspace{1cm} r=1$

Here $r = (a/b^d)$ The bounds of the sum are 0 and the depth of the tree: base case when $n/b^i = 1 \rightarrow b^i=n \rightarrow i = \log_b n$
\[f(n) = af(n/b) + n^d \]
\[f(1) = c \quad \leftarrow \text{does not play a role, as we only care about } O \]

Level \(i \): \(a^i \) calls of \(f(n/d^i) \)

Stops when \(n/b^i = 1 \) i.e. \(i = \log_b n \)

\[n^d \sum_{i=0}^{\log_b n} (a/b^d)^i \]
Three Cases for $r = (a/b^d)$

Geometric series: $\sum_{i=0}^{k} r^i = \frac{r^{k+1} - 1}{r - 1}$ Here $r = (a/b^d)$

1. $r < 1$ e.g. $r = \frac{1}{2}$ $1 + 1/2 + 1/4 + ... < 2$ for any k
2. $r = 1$ $\sum_{i=0}^{k} 1^i = k + 1 = O(k)$
3. $r > 1$ e.g. $r = 2$ $1 + 2 + 4 + 2^k = 2^{k+1} - 1 = O(2^k)$
The three cases in practice

\[T(n) = 2T(n/2) + n \] \hspace{1em} // mergesort

\[r = 1 \quad a=2, \ b=2, \ d=1 \quad r = a/b^d = 1 \quad n^1 \sum_{i=0}^{\log n} 1^i = n (\log n + 1) \]

\[T(n) = O(n \log n) \]

\[T(n) = 2T(n/2) + 1 \] \hspace{1em} // e.g. recursive max in array size \(n \):

if \(n=1 \), then the element is the max.

\[r > 1 \quad \text{else divide array in 2 halves, find max of each and choose max of the two} \]

\[a=2, \ b=2, \ d=0 \quad r = a/b^d = 2 \quad n^0 \sum_{i=0}^{\log n} 2^i = (2^{\log n + 1} - 1)/(2-1) = (2n-1)/1 \]

\[T(n) = O(n) \]

\[T(n) = 2T(n/2) + n^2 \]

\[r < 1 \quad a=2, \ b=2, \ d=2 \quad r = - a/b^d = 1/2 \quad n^2 \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i = n^2 \left(1+1/2+1/4+\ldots\right) < 2 \ n^2 \]

\[T(n) = O(n^2) \]

Draw trees for these and do the analysis, \hspace{1em} as in slides 9, 10, 11
The Master Theorem

Let f be an increasing function that satisfies

$$f(n) = a \cdot f(n/b) + c \cdot n^d$$

whenever $n = b^k$, where k is a positive integer, $a \geq 1$, b is an integer >1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

The Master theorem specifies the big O solution of the geometric series in Slide 11 for $r<1$, $r=1$, $r>1$ $(r = a/b^d)$

Proof: See e.g. Rosen,

Cormen et.al. has a more general version of the Master Theorem
Master Theorem

\[f(n) = a \cdot f(n/b) + cn^d \]

Merge Sort:

\[f(n) = \begin{cases}
 O(n^d) & \text{if } a < b^d \\
 O(n^d \log n) & \text{if } a = b^d \\
 O(n^{\log_b a}) & \text{if } a > b^d
\end{cases} \]

- \(a = 2 \)
- \(b = 2 \)
- \(d = 1 \)
- \(O(n \log n) \)