Divide and Conquer

Recurrence Relations
Divide-and-Conquer

Strategy:
- Break up problem into parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.
MergeSort

Mergesort.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

\[
\begin{array}{cccccccc}
A & L & G & O & R & I & T & H & M & S \\
A & L & G & O & R & I & T & H & M & S \\
A & G & L & O & R & H & I & M & S & T \\
A & G & H & I & L & M & O & R & S & T \\
\end{array}
\]

divide $O(1)$
sort $2T(n/2)$
merge $O(n)$
Complexity of merge

time
 \(O(n)\)

space
 \(O(n)\)
 Can you do it in less than \(2n\)?
A Recurrence Relation for MergeSort

$T(n) = \text{number of comparisons required to mergesort an input of size } n.$

MergeSort recurrence.

$$T(n) \leq \begin{cases}
 c & \text{if } n = 1 \\
 T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + cn & \text{otherwise}
\end{cases}$$

solve left half

solve right half

merging
Recurrence Relations

A recurrence relation for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one of more of the previous terms of the sequence, namely, \(a_0, a_1, \ldots a_{n-1} \), for all integers \(n \) with \(n \geq n_0 \) where \(n_0 \) is a nonnegative integer.

A sequence is defined by a recurrence relation + initial conditions ("base cases")

Example: Towers of Hanoi:

\[a_n = 2a_{n-1} + 1, \ a_1 = 1 \]
A Recurrence Relation for MergeSort

T(n) = number of comparisons required to mergesort an input of size n.

Mergesort recurrence.

\[T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 \frac{c}{2} T\left(\frac{n}{2} \right) + \frac{c}{2} T\left(\frac{n}{2} \right) + cn & \text{otherwise}
\end{cases} \]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. We assume n is a power of 2 and replace \(\leq \) with = (we only care about the order of magnitude)
Unrolling the recursion

\[T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{otherwise}
\end{cases} \]

\[T(n/2) \]

\[T(n/4) \]

\[T(1) \]

\[n \]

\[n/2^k = 1 \text{ when } k = \log_2 n \]
Repeated substitution

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = cn \log_2 n$.

$$\begin{align*}
T(n) &= \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{otherwise}
\end{cases} \\
&= \begin{cases}
 c & \text{if } n = 1 \\
 \text{sorting both halves} & \text{merging}
\end{cases}
\end{align*}$$

For $n > 1$:

$$\begin{align*}
T(n) &= 2T(n/2) + cn \\
&= 4T(n/4) + cn + 2n/2 \\
&= 8T(n/8) + cn + cn + 4cn/4 \\
&\quad \vdots \\
&= 2^{\log_2 n}T(1) + cn + \cdots + cn \\
&= O(n \log_2 n)
\end{align*}$$

This reaches $T(1)$ when $n = 2^{\log_2 n}$ by definition of $\log_2 n$.

By definition of $\log_2 n$.
Example: Towers of Hanoi, move all disks to third peg without ever placing a larger disk on a smaller one.

What’s the recurrence relation?

Let’s solve it by repeated substitution:
- Unroll the recurrence
- Identify a pattern
- Determine how often the pattern occurs before base case is hit, and sum over all the levels of the recursion
Hanoi by repeated substitution

\[f_1 = 1 \]
\[f_n = 2f_{n-1} + 1 = 2(2f_{n-2} + 1) + 1 = 4f_{n-2} + 2 + 1 = 4(2f_{n-3} + 1) + 2 + 1 = \]
\[= 8f_{n-3} + 4 + 2 + 1 \]
\[= 2^3f_{n-3} + \sum_{i=0}^{2} 2^i = 2^4f_{n-4} + \sum_{i=0}^{3} 2^i = 2^k f_{n-k} + \sum_{i=0}^{k-1} 2^i \]

After \(n-1 \) substitutions, \(k = n-1, \quad f_{n-(n-1)} = f_1 = 1, \) and then

\[2^{n-1}f_1 + \sum_{i=0}^{n-2} 2^i = 2^{n-1} + \sum_{i=0}^{n-2} 2^i = 2^n - 1 = O(2^n) \]
Repeated substitution for Binary Search

What's the recurrence relation for binary search?

Apply repeated substitution to solve it.
Finding maximum in unsorted array

Algorithm:
- If \(n=1 \), then element is the max.
- If \(n>1 \), divide array in half, find max of each and choose max of the two

Recurrence relation?
Solve by repeated substitution

\[
f(n) = 2f(n/2)+1 = 4f(n/4) + 2 + 1 = \ldots 2^k(f(n/2^k)) + 2^{k-1} + 2^{k-2} + \ldots + 1 = 2.2^{k-1} = 2n-1
\]

when \(k = \log_2 n \) \(n=2^k \) and \(f(n/2^k) = f(1)=1 \)

STUDY YOUR LOGs (see Orders of magnitude lecture notes)
Useful trick: \(y^{\log x} = x^{\log y} \)
Also: \(x^0+x^1+\ldots+x^n = (x^{n+1}-1)/(x-1) \) (geometric series)
The Master Theorem

Let f be an increasing function that satisfies

$$f(n) = a \cdot f(n/b) + c \cdot n^d$$

whenever $n = b^k$, where k is a positive integer, $a \geq 1$, b is an integer > 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) = \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$

From section 7.3 in Rosen
mergesort: Recurrence Analysis

\[f(n) = a \cdot f(n/b) + cn^d \]

\[
\begin{align*}
a &= \\
b &= \\
d &= \\
o(?)
\end{align*}
\]

\[
\begin{align*}
f(n) &= \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\end{align*}
\]