Shortest Paths with Arbitrary Edge Weights

Cormen et. al. 24.1
Shortest Path Problem

Shortest path problem. Given a directed graph $G = (V, E)$, with edge weights c_{vw}, find shortest path from node s to node t. This time we allow zero and negative edge weights.
Dijkstra can fail with negative edge costs. Shortest path s to t is not $s \rightarrow t$

Re-weighting: what if we add large enough value to each edge weight so all weights >0?
Dijkstra can fail with negative edge costs. Shortest path s to t is not $s \rightarrow t$

Re-weighting. Adding a constant to every edge weight can fail. Shortest path does not have the minimum number of edges.
Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; therefore we consider only graphs with no negative cycles.

If there is no negative cycle the shortest path is simple (no nodes repeated). What about 0 sum cycles?
Observation: as there are no negative cycles, and a zero sum cycle does not add to the path length, we can ignore cycles in our algorithm, searching for simple shortest paths, altogether.

Therefore, a shortest path does not repeat any node.

Therefore any shortest path has at most $n-1 = |V|-1$ edges.

Objective: shortest path from node s to node t

Define: $OPT(i, v) =$ length of shortest v-t path using at most i edges.
A Dynamic Programming Approach

\(\text{OPT}(i, v) = \text{length of shortest } v\text{-}t \text{ path using at most } i \text{ edges.} \)

We want to create a recurrence, i.e. express \(\text{OPT}(i,v) \) in some \(\text{Opt}(j,w) \) \(j<i \)

- **Case 1:** path uses at most \(i-1 \) edges.
 - \(\text{OPT}(i, v) = \text{OPT}(i-1, v) \)

- **Case 2:** path uses up to \(i \) edges.
 - use edge \((v,w)\), and then best \(w\text{-}t \) path using \(i-1 \) edges

\[\text{OPT}(i, v) = \begin{cases}
0 & \text{if } v = t, \text{ otherwise } \infty \\
\min \left\{ \text{OPT}(i-1, v), \min_{(v,w) \in E} \left\{ \text{OPT}(i-1, w) + c_{vw} \right\} \right\} & \text{otherwise}
\end{cases} \quad \text{if } i = 0 \]

What is the length of the optimal \(s\text{-}t \) path? \(\text{OPT}(n-1, s) , \quad n = |V| \)
Bellman Ford

BF(G, s, t)
n = |V|
array $M[0..n-1, V]$
$M[0,t]=0$ $M[0,v]=\infty$ for all $v!=t$
for $i = 1$ to $n-1$
 compute $M[i,v]$ using the recurrence
return $M[n-1,s]$

foreach edge $(v, w) \in E$
 $M[i,v] \leftarrow \min(M[i-1,v], M[i-1,w]+c_{vw})$
Bellman Ford

\[BF(G, s, t) \]
\[n = |V| \]

array \(M[0..n-1, V] \)
\(M[0, t] = 0 \) \(M[0, v] = \infty \) for all \(v \neq t \)
for \(i = 1 \) to \(n-1 \)
compute \(M[i, v] \) using the recurrence
return \(M[n-1, s] \)

\(O(mn) \) time, \(O(n^2) \) space. \(n = |V|, m = |E| \)

for each node \(v \)
for each edge \((v, w) \in E \)
\(M[i, v] \leftarrow \min(M[i-1, v], M[i-1, w] + c_{vw}) \)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\(v \) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
\(t \) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\(a \) & \(\infty \) & -3 & -3 & -4 & -6 & -6 \\
\hline
\(b \) & \(\infty \) & \(\infty \) & 0 & -2 & -2 & -2 \\
\hline
\(c \) & \(\infty \) & 3 & 3 & 3 & 3 & 3 \\
\hline
\(d \) & \(\infty \) & 4 & 3 & 3 & 2 & 0 \\
\hline
\(e \) & \(\infty \) & 2 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Practical improvements.

- Since we only refer to the previous column, we only need to maintain $M[v] =$ length shortest v-t path that we have found so far.

- Update is now:
 $$M[v] \leftarrow \min \{ M[v], M[w] + c_{vw} \}$$

- The role of i is only as a counter.
Bellman-Ford: Efficient Implementation

Shortest-Path(G, s, t) {
 foreach node v ∈ V {
 M[v] ← ∞
 successor[v] ← None
 }
 M[t] = 0
 for i = 1 to n-1 {
 foreach node w ∈ V {
 if (M[w] has been updated in previous iteration) {
 foreach node v such that (v, w) ∈ E {
 if (M[v] > M[w] + c_{vw}) {
 M[v] ← M[w] + c_{vw}
 successor[v] ← w
 }
 }
 }
 }
 If no M[w] value changed in iteration i, stop.
 }
}
Detecting Negative Cycles

Comment. Bellman-Ford can be used to detect negative cycles by running it one more iteration.

Lemma. If $\text{OPT}(n,v) = \text{OPT}(n-1,v)$ for all v, then there is no negative cycle on a path to t.

because if there is a negative cycle, we can keep bringing $\text{OPT}(i,v)$ down

Lemma. If $\text{OPT}(n,v) < \text{OPT}(n-1,v)$ for some node v, then there is a negative cycle on a path to t.

because, as argued before, without negative cycles the path length (in edges) is at most $n-1$
Theorem. Can detect negative cost cycle in $O(mn)$ time.
- Add new node t and connect all nodes to t with 0-cost edge.
- Check if $OPT(n, v) = OPT(n-1, v)$ for node t.
 - if so, then no negative cycles
 - if not, then extract cycle from shortest path from v to t