Divide and Conquer

Recurrence Relations
Divide-and-Conquer

Strategy:

- Break up problem into parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.
Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

![Jon von Neumann (1945)](image)

\[
\begin{align*}
&\text{divide} & O(1) \\
&\text{sort} & 2T(n/2) \\
&\text{merge} & O(n)
\end{align*}
\]
Complexity of merge

time
 $O(n)$

space
 $O(n)$
 Can you do it in less than $2n$?
A Recurrence Relation for MergeSort

\[T(n) = \text{number of comparisons required to mergesort an input of size } n. \]

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
 c & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn & \text{otherwise}
\end{cases}
\]
Recurrence Relations

A recurrence relation for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one of more of the previous terms of the sequence, namely, \(a_0, a_1, \ldots a_{n-1} \), for all integers \(n \) with \(n \geq n_0 \) where \(n_0 \) is a nonnegative integer.

A sequence is defined by a recurrence relation + initial conditions ("base cases")

Example: Towers of Hanoi:
\[
a_n = 2a_{n-1} + 1, \ a_1 = 1
\]
A Recurrence Relation for MergeSort

\[T(n) = \text{number of comparisons required to mergesort an input of size } n. \]

Mergesort recurrence.

\[
T(n) = \begin{cases}
c & \text{if } n = 1 \\
T\left(\frac{n}{2} \right) + T\left(\frac{n}{2} \right) + cn & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n). \)

Assorted proofs. We describe several ways to prove this recurrence. We assume \(n \) is a power of 2 and replace \(\leq \) with = (we only care about the order of magnitude)
Unrolling the recursion

\[T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{otherwise}
\end{cases} \]

Sorting both halves

Merging

\[n/2^k = 1 \text{ when } k = \log_2 n \]

\[n \log_2 n \]
Repeated substitution

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = cn \log_2 n \).

For \(n > 1 \):

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{otherwise}
\end{cases}
\]

sorted both halves merging

This reaches \(T(1) \) when
\[n = 2^{\log_2 n} \]
by definition of \(\log_2 n \)

\[
T(n) = 2T(n/2) + cn \\
= 4T(n/4) + cn + 2n/2 \\
= 8T(n/8) + cn + cn + 4cn/4 \\
\cdots \\
= 2^{\log_2 n} T(1) + cn + \cdots + cn \\
= O(n \log_2 n)
\]
Example: Towers of Hanoi, move all disks to third peg without ever placing a larger disk on a smaller one.

What’s the recurrence relation?

Let’s solve it by repeated substitution:

- Unroll the recurrence
- Identify a pattern
- Determine how often the pattern occurs before base case is hit, and sum over all the levels of the recursion
Hanoi by repeated substitution

\[f_1 = 1 \]
\[f_n = 2 \cdot f_{n-1} + 1 = 2(2f_{n-2} + 1) + 1 = 4f_{n-2} + 2 + 1 = 4(2f_{n-3} + 1) + 2 + 1 = \]
\[= 8f_{n-3} + 4 + 2 + 1 \]
\[= 2^3f_{n-3} + \sum_{i=0}^{2}2^i = 2^4f_{n-4} + \sum_{i=0}^{3}2^i = 2^k f_{n-k} + \sum_{i=0}^{k-1}2^i \]

After \(n-1 \) substitutions, \(k = n-1, \quad f_{n-(n-1)} = f_1 = 1 \), and then

\[2^{n-1}f_1 + \sum_{i=0}^{n-2}2^i = 2^{n-1} + \sum_{i=0}^{n-2}2^i = 2^n - 1 = O(2^n) \]
Repeated substitution for Binary Search

What’s the recurrence relation for binary search?

Apply repeated substitution to solve it.
Finding maximum in unsorted array

Algorithm:
- If $n=1$, then element is the max.
- If $n>1$, divide array in half, find max of each and choose max of the two

Recurrence relation?
Solve by repeated substitution

$$f(n) = 2f(n/2)+1 = 4f(n/4) + 2 + 1 = \ldots 2^k(f(n/2^k)) + 2^{k-1} + 2^{k-2}+\ldots+1 = 2.2^{k-1} = 2n-1$$

when $k = \log_2 n$, $n=2^k$ and $f(n/2^k) = f(1)=1$

STUDY YOUR LOGs (see Orders of magnitude lecture notes)
Useful trick: $y^{\log x} = x^{\log y}$
Also: $x^0+x^1+\ldots+x^n = (x^{n+1}-1)/(x-1)$ (geometric series)
The Master Theorem

Let f be an increasing function that satisfies

$$f(n) = a \cdot f(n/b) + c \cdot n^d$$

whenever $n = b^k$, where k is a positive integer, $a \geq 1$, b is an integer > 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) = \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$

From section 7.3 in Rosen
mergesort: Recurrence Analysis

\[f(n) = a \cdot f(n/b) + cn^d \]

\[
\begin{align*}
 a &= \\
 b &= \\
 d &= \\
 O(?) &
\end{align*}
\]

\[
f(n) = \begin{cases}
 O(n^d) & \text{if } a < b^d \\
 O(n^d \log n) & \text{if } a = b^d \\
 O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]