A Space Efficient Knapsack Algorithm

Wim Bohm, Sanjay Rajopadhye, CS, CSU

sources: Cormen, Leiserson; Kleinberg, Tardos, Vipin Kumar et.al.
Knapsack Problem

- Given n objects and a "knapsack" of capacity W
- Item i has a weight $w_i > 0$ and value $v_i > 0$.
- Goal: fill knapsack so as to maximize total value.
- Is there a Greedy solution?

Greedy approach: repeatedly add item with maximum v_i / w_i profit weight ratio ...

Does Greedy work?

Capacity $M = 7$, Number of objects $n = 3$

$w = [5, 4, 3]$
$v = [10, 7, 5] \quad \text{(ordered by } v_i / w_i \text{ ratio)}$
Recursion for Knapsack Problem

Notation: $OPT(i, W) =$ optimal value of max weight subset that uses items $1, \ldots, i$ with weight limit w.

Case 1: item i is not included:
- Take best of $\{1, 2, \ldots, i-1\}$ using weight limit W: $OPT(i-1, w)$

Case 2: item i with weight w_i and value v_i is included:
- only possible if $w \geq w_i$
- new weight limit $= w - w_i$
- Take best of $\{1, 2, \ldots, i-1\}$ using weight limit $w-w_i$ and add v_i: $OPT(i-1, W-w_i)+v_i$

$$OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i-1, w) & \text{if } w_i > w \\
\max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise}
\end{cases}$$
Knapsack Problem: Bottom-Up Dynamic Programming

Knapsack. Fill an n-by-W array.

Input: \(n, W, w_1,...,w_N, v_1,...,v_N \)

for \(w = 0 \) to \(W \)
 \(M[0, w] = 0 \)

for \(i = 1 \) to \(n \)
 for \(w = 0 \) to \(W \)
 if \(w_i > w \) :
 \(M[i, w] = M[i-1, w] \)
 else :
 \(M[i, w] = \max \left(M[i-1, w], v_i + M[i-1, w-w_i] \right) \)

return \(M[n, W] \)
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\[
W = 11
\]
Knapsack Algorithm

How do we find the choice vector x, in other words the objects picked in the optimum solution?

Walk back through the table!!
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11

<table>
<thead>
<tr>
<th>n+1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>40</td>
</tr>
</tbody>
</table>

OPT: 40

n=5 Don’t take object 5
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: 40

- **n=5** Don’t take object 5
- **n=4** Take object 4

W = 11

<table>
<thead>
<tr>
<th>n+1</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n+1</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

W = 11
Knapsack Algorithm

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1,2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

OPT: 40
n=5 Don’t take object 5
n=4 Take object 4
n=3 Take object 3

and now we cannot take anymore, so choice set is \{3,4\}
Time and Space Complexity

Time complexity: $O(n*W)$ for n objects and knapsack capacity W. Does this mean knapsack has a polynomial solution?

NO! WHY NOT? W can be arbitrarily large (e.g. 2^n)

There are $O(2^n)$ choice vectors

Space complexity: $O(n*W)$. OK?

NO! This is in practice prohibitively large!

We need a more space efficient algorithm, even if it costs us some recomputation (but not more than a constant factor)
Space inefficiency

What causes it?

The table, why do we need it?

To compute the choice vector

Is there an alternative?

We could only keep rows (n-1 and n), do one step back for the last choice bit, and then recur (re-compute the table for (1..(n-1)). $O(W)$ Space! What’s the problem?

Table n^2*W, each sweep gives one bit for (n-i) and takes (n-i)*W time. Time complexity goes up an order of magnitude:

$O(n^2 * W)$

Alternative?
Recursive, Divide and Conquer, approach

Solve two halves of the table, for the first $n/2$ objects and for the second. This gives us two solution rows (row $n/2$ and row n)

Combine their solutions somehow to find the cut points

Now we have two sub tables left, and solve these recursively

Think about it before you move on! We need to divide the problem in two sub-problems with together half the size (cutting half the remaining table out each time).
Recursive approach

1. Fill two tables, for the first \(\frac{n}{2} \) objects and for the second. This gives us two solution rows (row \(\frac{n}{2} \))
Recursive approach

1. Fill two tables, say for the first \(n/2 \) objects and for the second. This gives us two solution rows (row \(n/2 \)).

2. Combine the two solution rows somehow to find the cut-points. **HOW?**

3. Given total capacity \(W \), if I use \(C_1 \) for the top table, how much is left for the bottom table?

\[
W - C_1
\]
Recursive approach

1. Fill two tables, say for the first n/2 objects and for the second. This gives us two solution rows (row n/2)
2. Combine the two solution rows somehow to find optimum cut points
3. Now we have two sub-problems left, and solve these recursively
4. Base case: we have 1 object left, if it fits the capacity, it is in.

Runtime: $O(\text{Area}) = n \times W \times (1 + \frac{1}{2} + \frac{1}{4} + \ldots + (\frac{1}{2})^k) < 2 \times n \times W$
Space: $O(W)$ (constant number of rows)
Say we have computed the solution vectors $[0..W]$ of the two sub-tables (step 1 previous slide)

How do we find the cut points? (step 2)

If sub-problem 1 uses C_1 of capacity W, how much is left for sub-problem 2?

What are the two sub-problems we need to solve recursively? (step 3)

Sp1: objects $1 .. n/2$, capacity C_1
Sp2: objects $n/2+1 .. N$, capacity $W - C_1$

Hence, the cut points are C_1 and $W - C_1$
Finding the optimum combination

Define $T_1(k)$ the optimal profit that can be achieved for sub-problem 1 ($k = 0..W$), and $T_2(k)$ for sub-problem 2.

Then $P(k) = T_1(k) + T_2(C-k)$, ($k = 0..W$) is the maximum profit for the original problem, and the index of the maximum value of $P(k)$ gets us the optimum cut points!
N=8, C=16, O 1..8
W 2 6 4 3 1 3 2 1
V 2 4 5 2 3 1 1 2

Iterative solution: profit 17, choice vector X = 11101011

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

{1} 0 0 2 2 2 2 2 2 2 2 2 2 2 2 1
{1-2} 0 0 2 2 2 2 4 4 6 6 6 6 6 6 6 6 1
{1-3} 0 0 2 2 5 5 7 7 7 7 9 9 9 11 11 11 11 1
{1-4} 0 0 2 2 5 5 7 7 7 9 9 9 9 11 11 11 13 13 0
{1-5} 0 3 3 5 5 8 8 10 10 10 12 12 12 14 14 14 16 1
{1-6} 0 3 3 5 5 8 8 10 10 10 12 12 12 14 14 14 16 0
{1-7} 0 3 3 5 5 8 8 10 10 11 12 12 13 14 14 15 16 1
{1-8} 0 3 5 5 7 8 10 10 12 12 13 14 14 15 16 16 17 1
Solve N=8, C=16, O 1..8
W 2 6 4 3 1 3 2 1
V 2 4 5 2 3 1 1 2

N=4,C=16, O 1..4
0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 2 2 2 2 4 4 6 6 6 6 6 6 6 6
0 0 2 2 2 5 5 7 7 7 7 9 9 11 11 11
0 0 2 2 2 5 5 7 7 7 9 9 11 11 13 13

N=4,C=16, O 5..8
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
0 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5
0 3 5 5 6 6 6 7 7 7 7 7 7 7 7 7

optimum cut points: \(C_1, C_2 = 12, 4\)

Solve N=4,C=12, O 1..4
W 2 6 4 3
V 2 4 5 2
N=2,C=12, O 1..2
0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 2 2 2 2 4 4 6 6 6 6 6 6 6

N=2,C=12, O 3..4
0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5
0 0 0 2 5 5 7 7 7 7 7 7 7 7 7 7

optimum cut points: \(C_{1.1}, C_{1.2} = 8, 4\)

Solve N=4,C=4, O 5..8
...
Solve $N=4, C=12$, $O_{1..4}$

$W = [2, 6, 4, 3]$
$V = [2, 4, 5, 2]$

$N=2, C=12$, $O_{1..2}$

$0 \ 0 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 6 \ 6 \ 6 \ 6$

$N=2, C=12$, $O_{3..4}$

$0 \ 0 \ 0 \ 0 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$

optimum cut points:

$C_{1.1} = 8$, $C_{1.2} = 4$

Solve $N=2, C=4$, $O_{3..4}$

$W = [4, 3]$
$V = [5, 2]$

$N=1, C=4$, O_{3}

$0 \ 0 \ 0 \ 0 \ 5$

$N=1, C=4$, O_{4}

$0 \ 0 \ 0 \ 2 \ 2$

optimum points

$C_{2.1} = 4$, $C_{2.2} = 0$

Solve $N=1, C=0$, O_{4}

Base case: no fit, DON'T TAKE O_{4}: $X_{4} = 0$

Solve $N=1, C=4$, O_{3}

$W = [4], V = [5]$

Base case: fit, TAKE O_{3}, $X_{3} = 1$