Minimum Spanning Trees
CS 320, Fall 2017

Dr. Geri Georg, Instructor
georg@colostate.edu

Some materials adapted from Prof. Wim Bohm
Algorithmically....

Given a set of locations, with *positive* weights of some sort, we want to create a network \((T)\) that connects all nodes to each other with minimal sum of distances \((c_e, c \in T)\).

\[G = (V, E) \]

\[\sum_{e \in T} c_e = 50 \]
An Example
An Example
An Example
Clustering
Biological Prediction

neuron

dendrites

dendrite length predicted using MSTs

real dendrites

MST predictions
Greedy MST Algorithms

Kruskal's algorithm. Start with \(T = \emptyset \). Consider edges in ascending order of cost. Add edge \(e \) to \(T \) unless doing so would create a cycle.

Reverse-Delete algorithm. Start with \(T = E \). Consider edges in descending order of cost. Delete edge \(e \) from \(T \) unless doing so would disconnect \(T \).

Prim's algorithm. Start with some node \(s \) and greedily grow a tree \(T \) from \(s \). At each step, add the cheapest edge \(e \) to \(T \) that has exactly one endpoint in \(T \), i.e. without creating a cycle.
Cut Property

Let S be a subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T contains e.

Proof: T is a spanning tree so it has to have a path from v to w. Follow that path to w. It has to go somehow from v to v' (last node on P in S), to w' (1st node on P in $V-S$), then somehow to w.
Cut Property

Let S be a subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T contains e.

Proof continued: Now exchange e for e' to get:

$$T' = T - \{e'\} \cup \{e\}$$

We claim T' is a spanning tree. It is connected since any path can use e instead of e'. It is acyclic since we substituted e for e'. e is the cheapest edge with just 1 node in S, so $c_e < c_{e'}$, and the cost of T' < the cost of T.
Kruskal’s Algorithm

Create sets for each tree in the forest – initially one for each \(u \in V \)

Sort edges from least cost to most

For each edge \((u,v)\) taken in increasing cost order, if \(u \) and \(v \) are in different trees, add the edge to the MST and merge the vertices of the 2 trees
Muddy City – Kruskal’s
For each edge \((u,v)\) taken in increasing cost order, if \(u\) and \(v\) are in different trees, add the edge to the MST and merge the vertices of the 2 trees.

<table>
<thead>
<tr>
<th>ij</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>hi</td>
<td>2</td>
</tr>
<tr>
<td>gk</td>
<td>2</td>
</tr>
<tr>
<td>jk</td>
<td>2</td>
</tr>
<tr>
<td>bf</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>3</td>
</tr>
<tr>
<td>ef</td>
<td>3</td>
</tr>
<tr>
<td>af</td>
<td>3</td>
</tr>
<tr>
<td>hk</td>
<td>3</td>
</tr>
<tr>
<td>ei</td>
<td>3</td>
</tr>
<tr>
<td>de</td>
<td>3</td>
</tr>
<tr>
<td>bd</td>
<td>4</td>
</tr>
</tbody>
</table>

\(a\) \(b\) \(c\) \(d\) \(e\) \(f\) \(g\) \(h\) \(i\) \(j\) \(k\)

\(a-b, b-c, c-e, e-f, f-d, d-j, j-i, i-a\)

\(1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10\)
Prim’s Algorithm

Initialize $S = \text{any node}$. This will be the MST root.

Apply cut property to S: add min cost edge (v, w) where v is in S and w is in $V-S$, and add w to S.

Repeat until $S = V$.
Prim(G,r)

 foreach (u ∈ V)
 a[u] ← ∞; u.π = Ø
 a[r]= 0

min priority queue Q = {}

 foreach (u ∈ V) insert u onto Q (key: ‘a’
 value)

set S ← {}

while (Q is not empty) {
 u ← extract min element from Q
 S ← S ∪ { u }

 foreach (edge e = (u, v) incident to u)
 if ((v ∉ S) and (c_e < a[v]))
 decrease priority a[v] to c_e
 v.π = u
Muddy City – Prims’s

Graph showing connections between different points with edge weights.
min priority queue \(Q = \{ \} \)

\[
\text{foreach } (u \in V) \text{ insert } u \text{ in } Q
\]

set \(S \leftarrow \{ \} \)

while (\(Q \) is not empty) {
 \[
 u \leftarrow Q \text{ min element (delete)}
 \]
 \[
 S \leftarrow S \cup \{ u \}
 \]
 \[
 \text{foreach edge } e = (u, v)
 \]
 \[
 \text{if } ((v \not\in S) \text{ and } (c_e < a[v]))
 \]
 \[
 a[v] = c_e
 \]
 \[
 v.\pi = u
 \]

Causes \(Q \) to change
Image Credits

muddyCity: http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

clusteringMST2: https://www.researchgate.net/figure/236106483_fig2_Figure-2-Unrooted-minimum-spanning-tree-network-showing-genetic-relationship-among

dendritePP: http://www.pnas.org/content/109/27/11014.full.pdf