FAQ

• **A process** is isolated from other processes. Processes can run concurrently.

• **A thread** is not isolated from other threads belonging to the same process. Runs concurrently with other threads.

• **POSIX**: Portable Operating System Interface is a family of IEEE standards. It defines application programming interface (API), command line shells and utility interfaces, compatibility with variants of OSs.

• Processes/threads/IPC/IO.

• **What is a pthread?** POSIX compliant implementation of threads.

• **A function** when called within a new thread, runs concurrently with other threads.

• **Java threads: user threads or kernel threads?** Most JVMs implement threads with native, OS level threads,

• **Examples:** Self exercise set 2
• **Implicit threading:** thread creating automated: compiler assisted higher level programming

• **Unix signals vs interrupts:** Signals are a limited form of inter-process communication. Interrupts are often initiated by hardware. In both cases, some specific routines respond.

• **Hyper-threading:** Requires additional hardware. yes still widely used

• **Hardware-assisted parallelism, Out-of-order execution:** How? How did they evaluate? Advanced computer architecture topic

• **Signals example** (assume pid = 162): kill -9 162 or kill –s sigkill 162

• **Pthread example:** pthread_kill(ThreadID, SIGKILL);
Chapter 5: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation
Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait
- **CPU burst** followed by I/O burst
- CPU burst distribution is of main concern
Scheduling Criteria

• **CPU utilization** – keep the CPU as busy as possible: **Maximize**

• **Throughput** – # of processes that complete their execution per time unit: **Maximize**

• **Turnaround time** – time to execute a process from submission to completion: **Minimize**

• **Waiting time** – amount of time a process has been waiting in the ready queue: **Minimize**

• **Response time** – time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment): **Minimize**
Terms for a single process

- command arrives
- command begins running
- the first output of command appears
- command finishes executing

- wait time
- response time
- execution time
- turnaround time
Scheduling Algorithms

We will now examine several major scheduling approaches

- **Decide** which process in the ready queue is allocated the CPU

- Could be preemptive or nonpreemptive
 - preemptive: remove in middle of execution (“forced”)

- **Optimize** *measure* of interest
 - We will use **Gantt charts** to illustrate *schedules*
 - Bar chart with start and finish times for processes

Involuntary deboarding!
Nonpreemptive vs Preemptive scheduling

- **Nonpreemptive**: Process keeps CPU until it relinquishes it when
 - It terminates
 - It switches to the waiting state
 - Used by initial versions of OSs like Windows 3.x

- **Preemptive scheduling**
 - Pick a process and let it run for a maximum of some fixed time
 - If it is still running at the end of time interval?
 - Suspend it and pick another process to run

- A clock interrupt at the end of the time interval to give control back of CPU back to scheduler
Scheduling Algorithms

Algorithms

- First-Come, First-Served (FCFS)
- Shortest-Job-First (SJF)
 - Shortest-remaining-time-first
- Priority Scheduling
- Round Robin (RR) with time quantum
- Multilevel Queue
 - Multilevel Feedback Queue

Comparing Performance

- Average waiting time etc.
First- Come, First-Served (FCFS) Scheduling

- Process requesting CPU first, gets it first
- Managed with a FIFO queue
 - When process **enters** ready queue
 - PCB is tacked to the **tail** of the queue
 - When CPU is **free**
 - It is allocated to process at the **head** of the queue
- Simple to write and understand
First- Come, First-Served (FCFS) Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>24</td>
</tr>
<tr>
<td>(P_2)</td>
<td>3</td>
</tr>
<tr>
<td>(P_3)</td>
<td>3</td>
</tr>
</tbody>
</table>

• Suppose that the processes arrive in the order: \(P_1, P_2, P_3 \) but almost the same time.

The Gantt Chart for the schedule is:

- Waiting time for \(P_1 = \); \(P_2 = \); \(P_3 = \)
- Average waiting time: \((\quad + \quad + \quad)/ = \)
- Throughput: \(\quad / \quad = \) per unit time

Henry Gantt, 1910s
First-Come, First-Served (FCFS) Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>24</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
</tbody>
</table>

- Suppose that the processes arrive in the order: P_1, P_2, P_3 but almost the same time.
 The Gantt Chart for the schedule is:

 - Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
 - Average waiting time: $(0 + 24 + 27)/3 = 17$
 - Throughput: $3/30 = 0.1$ per unit time
Suppose that the processes arrive in the order: P_2, P_3, P_1

- The Gantt chart for the schedule is:

```
  0   3   6   9   12  15  18  21  24  27  30
P2  P3  P1
```

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: $(6 + 0 + 3)/3 = 3$
 - Much better than previous case
- But note -Throughput: $3/30 = 0.1$ per unit same
- **Convoy effect** - short process behind long process
 - Consider one CPU-bound and many I/O-bound processes
Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- Reduction in waiting time for short process greater than increase in waiting time for long process
- SJF is optimal – gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Estimate or could ask the user
Example of SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>6</td>
</tr>
<tr>
<td>P_2</td>
<td>8</td>
</tr>
<tr>
<td>P_3</td>
<td>7</td>
</tr>
<tr>
<td>P_4</td>
<td>3</td>
</tr>
</tbody>
</table>

- All arrive at time 0.
- SJF scheduling chart

- Average waiting time for $P_1, P_2, P_3, P_4 = (+ + +) / =
Example of SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>6</td>
</tr>
<tr>
<td>P_2</td>
<td>8</td>
</tr>
<tr>
<td>P_3</td>
<td>7</td>
</tr>
<tr>
<td>P_4</td>
<td>3</td>
</tr>
</tbody>
</table>

- All arrive at time 0.
- SJF scheduling chart

- Average waiting time for $P_1, P_2, P_3, P_4 = (3 + 16 + 9 + 0) / 4 = 7$
Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to the recent bursts
 – Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using exponential averaging

 1. \(t_n = \text{actual length of } n^{th} \text{ CPU burst} \)
 2. \(\tau_{n+1} = \text{predicted value for the next CPU burst} \)
 3. \(\alpha, 0 \leq \alpha \leq 1 \)
 4. Define: \(\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n \).

• Commonly, \(\alpha \) set to \(\frac{1}{2} \)
• Preemptive version called shortest-remaining-time-first
Prediction of the Length of the Next CPU Burst

Blue points: guess
Black points: actual
\(\alpha = 0.5 \)

Ex:
\(0.5 \times 6 + 0.5 \times 10 = 8 \)

<table>
<thead>
<tr>
<th>CPU burst ((t_i))</th>
<th>6</th>
<th>4</th>
<th>6</th>
<th>4</th>
<th>13</th>
<th>13</th>
<th>13</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>"guess" ((\tau_i))</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Examples of Exponential Averaging

- $\alpha = 0$
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- $\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$
- If we expand the formula, substituting for τ_n, we get:
 $$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_{n-1} + \ldots + (1 - \alpha)^j \alpha t_{n-j} + \ldots + (1 - \alpha)^{n+1} \tau_0$$
- Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Widely used for predicting stock-market etc
Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and preemption to the analysis.

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>P₂</td>
<td>1</td>
<td>4 (will preempt because 4<7)</td>
</tr>
<tr>
<td>P₃</td>
<td>2</td>
<td>9 (will not preempt)</td>
</tr>
<tr>
<td>P₄</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

• Preemptive SJF Gantt Chart

• Average waiting time for P₁,P₂,P₃,P₄
 \[= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 \text{ msec} \]
Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 – Preemptive
 – Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

• Problem ≡ Starvation – low priority processes may never execute
 – Solution ≡ Aging – as time progresses increase the priority of the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094! 😊
Example of Priority Scheduling

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>P_2</td>
<td>1</td>
<td>1 (highest)</td>
</tr>
<tr>
<td>P_3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>P_4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>P_5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

- Arrived at time 0 in order P1, P2, P3, P4, P5 (which does not matter)
- Priority scheduling Gantt Chart

![Gantt Chart]

- Average waiting time for P1, .. P5: \((6+0+16+18+1)/5 = 8.2\) msec
Round Robin (RR) with time quantum

- Each process gets a small unit of CPU time (time quantum q), usually 1-10 milliseconds. After this, the process is preempted, added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets $1/n$ of the CPU time in chunks of at most q time units at once. No process waits more than $(n-1)q$ time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - q large \Rightarrow FIFO
 - q small \Rightarrow q must be large with respect to context switch, otherwise overhead is too high (overhead typically in 0.5\% range)
Example of RR with **Time Quantum = 4**

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>24</td>
</tr>
<tr>
<td>P_2</td>
<td>3</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
</tbody>
</table>

- Arrive a time 0 in order P_1, P_2, P_3: The Gantt chart is:

- Waiting times: P_1:10-4 = 6, P_2:4, P_3:7, average $17/3 = 5.66$ units
- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually **10ms to 100ms**, context switch < 10 µsec

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution
Time Quantum and Context Switch Time

Much smaller quantum compared to burst: many switches
Turnaround Time Varies With The Time Quantum

Rule of thumb: 80% of CPU bursts should be shorter than q

Illustration
q=7:
Turnaround times for P1,P2,P3,P4: 6,9,10,17 av = 10.5
Similarly for q =1, ..6
Multilevel Queue

- Ready queue is partitioned into separate queues, e.g.:
 - **foreground** (interactive)
 - **background** (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm, e.g.:
 - foreground – RR
 - background – FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. Or
 - Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR, 20% to background in FCFS
Multilevel Queue Scheduling

highest priority

- system processes
- interactive processes
- interactive editing processes
- batch processes
- student processes

lowest priority
Multilevel Feedback Queue

- A process can move between the various queues; **aging** can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to **upgrade** a process
 - method used to determine when to **demote** a process
 - method used to determine which queue a process will enter when that process needs service
Example of Multilevel Feedback Queue

• Three queues:
 – Q_0 – RR with time quantum 8 milliseconds
 – Q_1 – RR time quantum 16 milliseconds
 – Q_2 – FCFS (no time quantum limit)

• Scheduling
 – A new job enters queue Q_0 which is served FCFS
 • When it gains CPU, job receives 8 milliseconds
 • If it does not finish in 8 milliseconds, job is moved to queue Q_1
 – At Q_1 job is again served FCFS and receives 16 additional milliseconds
 • If it still does not complete, it is preempted and moved to queue Q_2

CPU-bound: priority falls, quantum raised, I/O-bound: priority rises, quantum lowered
Thread Scheduling

- Thread scheduling is similar
- Distinction between user-level and kernel-level threads
- When threads supported, threads scheduled, not processes

Scheduling competition
- Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
 - Known as process-contention scope (PCS) since scheduling competition is within the process
 - Typically done via priority set by programmer
- Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all threads in system

LWP layer between kernel threads and user threads in some older OSs
• Solaris scheduling: 6 classes, Inverse relationship between priorities and time quantum
• Windows XP scheduling: 32 priority levels (real-time, not real-time levels)
• Linux scheduling schemes have continued to evolve.
• Linux ** Completely fair scheduler** (CFS, 2007):
 – Variable time-slice based on number and priority of the tasks in the queue.
 – Maximum execution time based on waiting processes (Q/n).
 – Processes kept in a red-black binary tree with scheduling complexity of $O(\log N)$
 – Process with lowest weighted spent execution (virtual run time) time is picked next. Weighted by priority (“niceness”).
Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are available.
• **Assume Homogeneous processors** within a multiprocessor
• **Asymmetric multiprocessing** – individual processors can be dedicated to specific tasks at design time
• **Symmetric multiprocessing (SMP)** – each processor is self-scheduling,
 – all processes in common ready queue, **or**
 – each has its own private queue of ready processes
 • Currently, most common
• **Processor affinity** – process has affinity for processor on which it is currently running because of info in cache
 – **soft affinity**: try but no guarantee
 – **hard affinity** can specify processor sets
Note that memory-placement algorithms can also consider affinity. Non-uniform memory access (NUMA), in which a CPU has faster access to some parts of main memory.
Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• **Load balancing** attempts to keep workload evenly distributed
 – **Push migration** – periodic task checks load on each processor, and if found pushes task from overloaded CPU to other CPUs
 – **Pull migration** – idle processors pulls waiting task from busy processor
 – Combination of push/pull may be used.
Multicore Processors

- Recent trend to place multiple processor cores on same physical chip
- Faster and consumes less power
- Multiple threads per core now common
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens
 - See next
Multithreaded Multicore System

This is temporal multithreading. Simultaneous multithreading allows threads to computer in parallel.
Real-Time CPU Scheduling

• Can present obvious challenges
 – Soft real-time systems – no guarantee as to when critical real-time process will be scheduled
 – Hard real-time systems – task must be serviced by its deadline

• For real-time scheduling, scheduler must support preemptive, priority-based scheduling
 – But only guarantees soft real-time

• For hard real-time must also provide ability to meet deadlines
 – periodic ones require CPU at constant intervals
Virtualization and Scheduling

- Virtualization software schedules multiple guests onto CPU(s)
- Each guest doing its own scheduling
 - Not knowing it doesn’t own the CPUs
 - Can effect time-of-day clocks in guests
- VMM has its own scheduler
- Various approaches have been used
 - Workload aware, Guest OS cooperation, etc.
Operating System Examples

• Solaris scheduling: 6 classes, Inverse relationship between priorities and time quantum
• Windows XP scheduling: 32 priority levels (real-time, not real-time levels)
• Linux scheduling schemes have continued to evolve.
• Linux **Completely fair scheduler** (CFS, 2007):
 – Variable time-slice based on number and priority of the tasks in the queue.
 – Maximum execution time based on waiting processes (Q/n).
 – Processes kept in a red-black binary tree with scheduling complexity of $O(\log N)$
 – Process with lowest weighted spent execution (virtual run time) time is picked next. Weighted by priority (“niceness”).
Algorithm Evaluation

• How to select CPU-scheduling algorithm for an OS?
• Determine criteria, then evaluate algorithms
• **Deterministic modeling**
 – Type of *analytic evaluation*
 – Takes a particular predetermined workload and defines the performance of each algorithm for that workload
• Consider 5 processes arriving at time 0:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>10</td>
</tr>
<tr>
<td>P_2</td>
<td>29</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
<tr>
<td>P_4</td>
<td>7</td>
</tr>
<tr>
<td>P_5</td>
<td>12</td>
</tr>
</tbody>
</table>
Deterministic Evaluation

- For each algorithm, calculate minimum average waiting time
- Simple and fast, but requires exact numbers for input, applies only to those inputs
 - FCS is 28ms:
 - Non-preemptive SFJ is 13ms:
 - RR is 23ms:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>10</td>
</tr>
<tr>
<td>P_2</td>
<td>29</td>
</tr>
<tr>
<td>P_3</td>
<td>3</td>
</tr>
<tr>
<td>P_4</td>
<td>7</td>
</tr>
<tr>
<td>P_5</td>
<td>12</td>
</tr>
</tbody>
</table>
Probabilistic Models

• Assume that the arrival of processes, and CPU and I/O bursts are random
 – Repeat deterministic evaluation for many random cases and then average

• Approaches:
 – Analytical: Queuing models
 – Simulation: simulate using realistic assumptions
Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc

- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc
Little’s Formula

- $n = \text{average queue length}$
- $W = \text{average waiting time in queue}$
- $\lambda = \text{average arrival rate into queue}$
- Little’s law – in steady state, processes leaving queue must equal processes arriving, thus:
 \[
 n = \lambda \times W
 \]
 - Valid for any scheduling algorithm and arrival distribution

- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds
Simulations

- Queueing models limited
- **Simulations** more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - Random number generator according to probabilities
 - Distributions defined mathematically or empirically
 - Trace tapes record sequences of real events in real systems
Evaluation of CPU Schedulers by Simulation

- Actual process execution
 - CPU 10
 - I/O 213
 - CPU 12
 - I/O 112
 - CPU 2
 - I/O 147
 - CPU 173

- Trace tape

- Simulation
 - FCFS
 - Performance statistics for FCFS

- Simulation
 - SJF
 - Performance statistics for SJF

- Simulation
 - RR (q = 14)
 - Performance statistics for RR (q = 14)
Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- Most flexible schedulers can be modified per-site or per-system
- Or APIs to modify priorities
- But again environments vary
CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2019 Synchronization

Slides based on
- Text by Silberschatz, Galvin, Gagne
- Various sources
Process Synchronization: Objectives

- Concept of process synchronization.
- The critical-section problem, whose solutions can be used to ensure the consistency of shared data.
- Software and hardware solutions of the critical-section problem.
- Classical process-synchronization problems.
- Tools that are used to solve process synchronization problems.