
CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

HW5: Programming Assignment v10.14.2021.5:00PM

SYNCHRONIZATION of PRODUCER and CONSUMER Threads

This assignment requires creation of multiple producer and consumer threads that access a buffer using

synchronization. You will implement a solution for the bounded-buffer producer-consumer problem using

threads in Java.

Due Date: Thursday, October 28, 2021, 11:00PM

Extended Due Date with 20% penalty: Friday, October 29, 2021, 11:00PM

Optional Extra Credit version: You can try it if you have time, and you would like to try it. Same Due

Date. No late submissions permitted. See the addition at the bottom.

1. Description of Task

You are required to implement this assignment in Java. It assumes that n items are to be produced and

consumed.

1. The Bounded Buffer (Bdbuffer.java): This buffer can hold a fixed number of items. This buffer

needs to be a first-in first-out (FIFO) buffer. You should implement this as a Circular Buffer that satisfies

the FIFO. There should be exactly one instance of the buffer. The producer and the consumers must

reference the same buffer.

2. Producers (Producer.java): The producers are responsible for producing data items to be added

to the buffer. If the buffer is full, a producer must wait for a consumer to consume at least one item

before it can add a new item to the buffer. If there are p producers, each producer is required to produce

n/p items. The item that the producer adds to the buffer is a random character (with values between

‘a’ and ‘z’, both inclusive).

When a producer successfully inserts an item in the buffer it should print the location of insertion and

time when insertion occurs with microsecond resolution, using this format:

Producer 2 inserted v at index 1 at time 2021-10-12 14:28:37.392914

When the random character is generated, you must also add it to a String so that it contains all the

elements that the Producer generates. getProducedStr() method is used to return this generated string

back to the Invoker.java file.

3. Consumers (Consumer.java): The consumers are responsible for consuming elements, generated

by the producer, from the buffer. If the buffer is empty, the consumers must wait for the producer to

add an item to the buffer. There may be one or more consumer threads running at the same time.

When a consumer successfully removes an item from the buffer it should print the location of removal

and time when removal occurs with microsecond resolution, using this format:

Consumer 2 consumed q at index 6 at time 2021-10-12 14:28:37.394665

When a consumer successfully consumes an item from the buffer it should also add it to the string. This

class should have a function named getConsumedStr(), which returns the string consumed by the

Consumer.

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

Mind that the statement of Producers producing an item should be underlined, so that it is easy to

distinguish a statement from Producer and Consumer.

You will use wait() and notify() as the primitives to synchronize access to the buffer.

The producer class object should take these arguments:

i. Copy of the instance of the buffer it will access in common with other Producers and other

Consumers,

ii. Number of elements that producer should generate,

iii. The ID, which is the number of the producer thread (i.e.: the first producer thread should be 1,

the second should be 2, etc.)

iv. The seed which is used by the random number generator to generate the random numbers to

be inserted.

The consumer class objects should take these arguments:

i. Copy of the instance of the buffer it will access in common with the Producers and other

Consumers,

ii. Number of elements that this thread of consumer should consume. This is the total number of

elements to be consumed divided by the total number of consumers (if it is evenly matched),

iii. The ID, which is the number of the consumer thread (i.e.: the first consumer thread should be

1, the second should be 2, etc.)

4. Main / Calling program (Invoker.java): Your main program should accept the seed command line

argument. Using this seed, the following elements must be randomly initialized.

Note that all four intervals are inclusive, i.e. end points are included.

i. Number of elements in buffer/buffer size (between 5 and 10) i.e. [5,10]

ii. Number of items to be produced and consumed (between 10 and 20) i.e. [10,20

iii. Number of consumers (between 2 and 5) i.e. [2,5]

iv. Number of producers (between 2 and 5) i.e. [2,5]

Each producer thread terminates when the specified number of items has been produced. After this,

you need to use the methods, getProducedStr() and getConsumedStr(), for each of the Producers and

Consumers to get the full Produced/Consumed string.

Since the strings at the consumer end are not always in order, the main/calling function must sort both

the strings obtained. Finally, if the sorted strings are the same, the Invoker.java program prints the

following:

The sorted Produced and Consumed strings are the same as shown: hhmmmmqqssuuvv

Correctness Verification:

● The items produced should match the items consumed.

● The circular buffer should work as intended. Only one thread should be able to access the buffer

at a time.

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

● An item can be consumed only after it has been produced. However, if the consumption is very

quick, within the smallest time resolution, production/consumption may appear to happen at

the same time, and the reports may get printed in wrong order, if the consumer printing occurs

first. To avoid this use System.out.flush()

2. Task Requirements

1. Implement the FIFO Circular Buffer and ensure that the buffer can hold the right number items

at a time, and the access to it is synchronized.

2. The number of items to be consumed should be equally distributed among the consumer threads

(whenever possible). Verify that the number of elements can be perfectly divided among the

consumers with no fractions involved, if not arrange for one of the consumer threads to handle

the difference. Also, a seed is to be passed to the producer.

3. A producer should wait if the buffer is full.

4. A consumer should wait if the buffer is empty.

5. Make sure that the printing requirements are met, specifically the underlined statements.

6. Your solution must satisfy the correctness constraint (i.e.: you consume each item exactly once,

in the order that it was produced, and demonstrate this by printing out the items produced and

consumed, along with the location and the timestamp with microsecond resolution). The code

to get the timestamp with microsecond resolution is provided to you, in Invoker.java. The

produced string of all Producer threads should be obtained after the join of each Producer object,

by calling getProducedStr() in the Producer class. The consumed string of each Consumer

thread is obtained after each Consumer thread join, by calling getConsumedStr() in the

Consumer class. The sorted string of all the Consumers should be the same as the sorted string

of all the Producers.

7. There should be no deadlock. Your program will be executed multiple times, and it should run

to completion every time without a deadlock.

8. Your program should work for any combination of the number of consumers, producers, number

of elements, and buffer size.

3. Files Provided

Files provided for this assignment include: the description file (this file), a README, and skeleton

Invoker.java and Producer.java files. This can be downloaded as a package from the course Canvas

assignment page.

Please refer to the README.txt file inside the package for the questions. You need to answer the

questions in the README file.

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

4. Example Outputs:

1. Example 1: Set Seed as 13

~$ java Invoker 13

[Invoker] Buffer Size: 9

[Invoker] Total Items: 12

[Invoker] No. of Producers: 2

[Invoker] No. of Consumers: 3

Producer 1 inserted m at index 0 at time 2021-10-13 19:54:15.605070

Consumer 3 consumed m at index 0 at time 2021-10-13 19:54:15.612287

Producer 2 inserted m at index 1 at time 2021-10-13 19:54:15.612916

Consumer 2 consumed m at index 1 at time 2021-10-13 19:54:15.613265

Producer 1 inserted a at index 2 at time 2021-10-13 19:54:15.627417

Consumer 1 consumed a at index 2 at time 2021-10-13 19:54:15.627819

Producer 1 inserted j at index 3 at time 2021-10-13 19:54:15.628321

Consumer 3 consumed j at index 3 at time 2021-10-13 19:54:15.628638

Producer 2 inserted a at index 4 at time 2021-10-13 19:54:15.628959

Consumer 2 consumed a at index 4 at time 2021-10-13 19:54:15.629272

Producer 2 inserted j at index 5 at time 2021-10-13 19:54:15.629606

Consumer 3 consumed j at index 5 at time 2021-10-13 19:54:15.629908

Producer 1 inserted o at index 6 at time 2021-10-13 19:54:15.630230

Consumer 1 consumed o at index 6 at time 2021-10-13 19:54:15.630563

Producer 1 inserted r at index 7 at time 2021-10-13 19:54:15.631084

Consumer 3 consumed r at index 7 at time 2021-10-13 19:54:15.631408

Producer 2 inserted o at index 8 at time 2021-10-13 19:54:15.631711

Consumer 2 consumed o at index 8 at time 2021-10-13 19:54:15.632059

Producer 2 inserted r at index 0 at time 2021-10-13 19:54:15.632335

Producer 1 inserted q at index 1 at time 2021-10-13 19:54:15.632617

Consumer 1 consumed r at index 0 at time 2021-10-13 19:54:15.632919

Producer 2 inserted q at index 2 at time 2021-10-13 19:54:15.633344

Consumer 2 consumed q at index 1 at time 2021-10-13 19:54:15.633653

Consumer 1 consumed q at index 2 at time 2021-10-13 19:54:15.633935

The sorted Produced and Consumed strings are the same as shown: aajjmmooqqrr

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

2. Example 2: Set Seed as 6

~$ java Invoker 6

[Invoker] Buffer Size: 6

[Invoker] Total Items: 18

[Invoker] No. of Producers: 2

[Invoker] No. of Consumers: 4

Producer 1 inserted r at index 0 at time 2021-10-13 19:55:55.096322

Consumer 4 consumed r at index 0 at time 2021-10-13 19:55:55.103695

Producer 2 inserted r at index 1 at time 2021-10-13 19:55:55.104359

Consumer 3 consumed r at index 1 at time 2021-10-13 19:55:55.104701

Producer 2 inserted g at index 2 at time 2021-10-13 19:55:55.118666

Consumer 1 consumed g at index 2 at time 2021-10-13 19:55:55.119071

Producer 2 inserted s at index 3 at time 2021-10-13 19:55:55.119400

Consumer 2 consumed s at index 3 at time 2021-10-13 19:55:55.119904

Producer 1 inserted g at index 4 at time 2021-10-13 19:55:55.120379

Consumer 3 consumed g at index 4 at time 2021-10-13 19:55:55.120696

Producer 1 inserted s at index 5 at time 2021-10-13 19:55:55.121028

Consumer 2 consumed s at index 5 at time 2021-10-13 19:55:55.121325

Producer 2 inserted w at index 0 at time 2021-10-13 19:55:55.121846

Consumer 1 consumed w at index 0 at time 2021-10-13 19:55:55.122183

Producer 2 inserted j at index 1 at time 2021-10-13 19:55:55.122520

Producer 2 inserted l at index 2 at time 2021-10-13 19:55:55.122819

Producer 2 inserted h at index 3 at time 2021-10-13 19:55:55.123121

Consumer 4 consumed j at index 1 at time 2021-10-13 19:55:55.123408

Consumer 2 consumed l at index 2 at time 2021-10-13 19:55:55.123724

Consumer 2 consumed h at index 3 at time 2021-10-13 19:55:55.124163

Producer 1 inserted w at index 4 at time 2021-10-13 19:55:55.124674

Consumer 3 consumed w at index 4 at time 2021-10-13 19:55:55.125012

Producer 1 inserted j at index 5 at time 2021-10-13 19:55:55.125315

Consumer 4 consumed j at index 5 at time 2021-10-13 19:55:55.125593

Producer 2 inserted g at index 0 at time 2021-10-13 19:55:55.125852

Consumer 1 consumed g at index 0 at time 2021-10-13 19:55:55.126110

Producer 2 inserted s at index 1 at time 2021-10-13 19:55:55.126374

Consumer 4 consumed s at index 1 at time 2021-10-13 19:55:55.126612

Producer 1 inserted l at index 2 at time 2021-10-13 19:55:55.126908

Consumer 3 consumed l at index 2 at time 2021-10-13 19:55:55.127186

Producer 1 inserted h at index 3 at time 2021-10-13 19:55:55.127470

Consumer 4 consumed h at index 3 at time 2021-10-13 19:55:55.127757

Producer 1 inserted g at index 4 at time 2021-10-13 19:55:55.128007

Consumer 1 consumed g at index 4 at time 2021-10-13 19:55:55.128223

Producer 1 inserted s at index 5 at time 2021-10-13 19:55:55.128546

Consumer 4 consumed s at index 5 at time 2021-10-13 19:55:55.128789

The sorted Produced and Consumed strings are the same as shown: gggghhjjllrrssssww

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

5. What to Submit

Use the CS370 Canvas to submit a single .zip or .tar file that contains:

● All .java files listed below and descriptive comments within,
o Invoker.java
o Producer.java

o Consumer.java
o Bdbuffer.java

● a Makefile that performs both a make build as well as a make clean,
● a README.txt file containing a description of each file and any information you feel the grader

needs to grade your program, and answers for the 4 questions

For this and all other assignments, ensure that you have submitted a valid .zip/.tar file. After submitting

your file, you can download it and examine it to make sure it is indeed a valid zip/tar file, by trying to

extract it.

Filename Convention: The archive file must be named as: <FirstName>-<LastName>-

HW5.<tar/zip>. E.g. if you are John Doe and submitting for assignment 1, then the tar file should be

named John-Doe-HW5.tar

Optional Extra Credit version: The archive file must be named as: <FirstName>-<LastName>-

HW5_EC.<tar/zip>. E.g. if you are John Doe and submitting for assignment 1, then the tar file should

be named John-Doe-HW5_EC.tar

6. Grading

The assignments must compile and function correctly on machines in the CSB-120 Lab. Assignments

that work on your laptop on your particular flavor of Linux/Mac OS X, but not on the Lab machines are

considered unacceptable.

The grading will also be done on a 100 point scale. The points are broken up as follows:

Objective Points

Correctly performing Tasks 1-8 (10 points each) 80 points

Providing a working Makefile. 5 points

Questions in the README file 5 points

Text alignment and underlining 5 points

Descriptive comments 5 points

Questions: (see README.txt file in the skeleton provided)

Restriction and Deductions:

[R1]. There is a 100-point deduction if you use an unbounded buffer for this assignment.

[R2]. There is a 100-point deduction if you use Thread.sleep() to synchronize access to the buffer. You

can only use wait() and notify() as the primitives to synchronize access to the buffer. Thread.sleep()

may be used for inserting random delays.

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

[R3]. Java has advanced classes for synchronization. These cannot be used for this assignment. Hence,

there is a 100-point deduction for using any classes other than the following:

1. java.util.Random 2. java.lang.Exception

3. java.time.Instant 4. java.time.Clock

5. java.time.Duration 6. java.util.Formatter

7. java.util.Arrays

There is a 100-point deduction for using any external library.

[R4]. There is an 80-point deduction for using a Boolean flag or any variable that toggles in values so

that your producer and consumer take turns adding to or consuming from the buffer. The solution must

be based entirely on the use of wait() and notify().

You are required to work alone on this assignment.

Notes:

1. The output should have Producer statements underlined. You can use “\033[0;4m” to start

underline formatting and “\033[0;0m” to stop the underline formatting in your print statement.

2. Look at the spacing for the word ‘at’ in Producer and the word ‘from’ in Consumer. Maintain the

same spacing as only then the time stamps line up correctly and can be viewed easily.

3. Use %3d for the formatter to display the ID aligned next to the Consumer and next to the Producer.

In other words, outputs from both, Consumer and Producer, should be aligned.

4. The number of elements to be consumed might be a multiple of the number of consumers (when

divided evenly), otherwise one of the consumers might have to take on a few more elements.

5. The number of elements to be produced might be a multiple of the number of producers (when

divided evenly), otherwise one of the producers might have to take on a few more elements.

6. Do not define a package inside of your programs which includes all your programs, as this will raise

an issue when the programs are run on terminals using command line.

7. Late Policy

Click here for the class policy on submitting late assignments.

Revisions: Any revisions in the assignment will be noted below.

• Oct 21, 2021: Optional Extra Credit version added below.

• Oct 25, 2021: Note that All intervals are inclusive

o Number of elements in buffer/buffer size (between 5 and 10) i.e. [5,10]

o Number of items to be produced and consumed (between 10 and 20) i.e. [10,20

o Number of consumers (between 2 and 5) i.e. [2,5]

o Number of producers (between 2 and 5) i.e. [2,5]

https://www.cs.colostate.edu/~cs370/Fall21/syllabus.html

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

Optional Extra Credit version

IMPORTANT: Please note that you should implement the regular assignment and turn it in

before attempting the extra credit. This should be a modification of your original submission.

For extra credit, you may choose to submit a second version of the program in addition to your original

submission. The new program will re-arrange the string to its original order as opposed to sorting it. The

input is no longer randomly generated, but instead, it’s in a file, which contains any number of

characters, new lines, and spaces.

Requirements

All other requirements from the main assignment which are not explicitly over-written stay

in place.

1. The Invoker takes a seed and an input file containing a string that may have any combination

of characters, including spaces and newlines.

2. The Invoker splits the file into chunks to feed to each producer.

a. At this point generate for each character in the input file a <index, char>

b. “Hello” - > (0, H) (1, e) (2,l) … (4,o)

3. The Bdbuffer no longer holds just characters. It must hold tuples.
a. Each tuple is (index, character). Note that these do not have to be actual tuples. This

just means that each element of the Bdbuffer is a key-value pair. It can be in any data

structure you design or use from the JAVA collections (list, array, tuple, map, etc..)

4. The producers are responsible for inserting tuples items in the Bdbuffer.
a. Not producing them!
b. Each producer gets an equal number of tuples. Any extras go to the last producer.

5. When a tuple is inserted in the Bdbuffer, you must add it to a data structure internal to each
producer.

a. You will use this data structure to reconstruct the string from all of the producers.
b. The producer class should have a function named getProducedTuples(), which

returns the tuples inserted by the Producer.
6. The consumers are responsible for consuming elements, inserted by the producer, from the

Bdbuffer.
7. When a consumer successfully consumes an item from the Bdbuffer it should also add it to a

data structure in the same way each producer does when inserting. This class should have a

function named getConsumedTuples(), which returns the tuples consumed by the

Consumer.
8. The Invoker reconstructs the string twice. Once from all the characters the producers inserted.

And a second time from the characters that the consumers consumed.

a. Use the methods, getProducedTuples() and getConsumedTuples(), for each of the

Producers and Consumers to get the full Produced/Consumed data structures.
9. The main/calling function must sort both the structures based on the key(index).

a. So that the string is back to its original order.

10. Finally, if the sorted strings are the same, the Invoker.java program prints the following:

Producer's output:

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

HelloWorld HereWe Are Again !@

Consumer's output:

HelloWorld HereWe Are Again !@

The producer class object should take these arguments:

i.Copy of the instance of the Bdbuffer it will access in common with other Producers and other

Consumers,

ii.A data structure containing each tuple to be inserted.
iii.The ID, which is the number of the producer thread (i.e.: the first producer thread should

be 1, the second should be 2, etc.)

The consumer class objects should take these arguments:
i.Copy of the instance of the Bdbuffer it will access in common with the Producers and other
Consumers,

ii.The number of elements that this thread of consumers should consume. This is the total

number of elements to be consumed divided by the total number of consumers (if it is evenly

matched),
iii.The ID, which is the number of the consumer thread (i.e.: the first consumer thread should

be 1, the second should be 2, etc.)

4. Main / Calling program (Invoker.java): Your main program should accept:
i.Seed
ii.Filename

Using this seed, the following elements must be randomly initialized.
i.Number of elements in Bdbuffer/Bdbuffer size (between 5 and 10) i.e. [5,10)
ii.Number of consumers (between 2 and 5) i.e. [2,5)

iii.Number of producers (between 2 and 5) i.e. [2,5)
Using the file name:

i.Open the file and read all the contents

 Example Outputs:
1. Example 1: input.txt contains “HelloWorld HereWe Are Again !@”

java Invoker 10 input.txt

[Invoker] Bdbuffer Size: 8

[Invoker] Total Items: 30

[Invoker] No. of Producers 3 No. of Consumers: 3

Producer 1 inserted H at index 0 at time 2021-10-14 12:47:27.084819

Consumer 3 consumed H at index 0 at time 2021-10-14 12:47:27.088406

Producer 3 inserted e at index 1 at time 2021-10-14 12:47:27.088822

Producer 3 inserted at index 2 at time 2021-10-14 12:47:27.089253

Producer 2 inserted at index 3 at time 2021-10-14 12:47:27.089591

Producer 3 inserted A at index 4 at time 2021-10-14 12:47:27.089953

Consumer 1 consumed e at index 1 at time 2021-10-14 12:47:27.090394

Consumer 2 consumed at index 2 at time 2021-10-14 12:47:27.090754

Consumer 2 consumed at index 3 at time 2021-10-14 12:47:27.091220

Consumer 3 consumed A at index 4 at time 2021-10-14 12:47:27.091552

Producer 1 inserted e at index 5 at time 2021-10-14 12:47:27.091904

Consumer 3 consumed e at index 5 at time 2021-10-14 12:47:27.092199

Producer 1 inserted l at index 6 at time 2021-10-14 12:47:27.092535

Consumer 2 consumed l at index 6 at time 2021-10-14 12:47:27.092836

Producer 3 inserted g at index 7 at time 2021-10-14 12:47:27.093177

Producer 2 inserted H at index 0 at time 2021-10-14 12:47:27.093500

Producer 3 inserted a at index 1 at time 2021-10-14 12:47:27.093813

Consumer 1 consumed g at index 7 at time 2021-10-14 12:47:27.094143

Consumer 2 consumed H at index 0 at time 2021-10-14 12:47:27.094471

Producer 1 inserted l at index 2 at time 2021-10-14 12:47:27.094785

CS 370: OPERATING SYSTEMS Fall 2021 Colorado State University

Consumer 3 consumed a at index 1 at time 2021-10-14 12:47:27.095083

Producer 1 inserted o at index 3 at time 2021-10-14 12:47:27.095368

Consumer 2 consumed l at index 2 at time 2021-10-14 12:47:27.095648

Consumer 1 consumed o at index 3 at time 2021-10-14 12:47:27.095927

Producer 3 inserted i at index 4 at time 2021-10-14 12:47:27.096207

Producer 2 inserted e at index 5 at time 2021-10-14 12:47:27.096495

Producer 3 inserted n at index 6 at time 2021-10-14 12:47:27.096827

Producer 3 inserted at index 7 at time 2021-10-14 12:47:27.097085

Consumer 1 consumed i at index 4 at time 2021-10-14 12:47:27.097348

Consumer 2 consumed e at index 5 at time 2021-10-14 12:47:27.097624

Producer 1 inserted W at index 0 at time 2021-10-14 12:47:27.097894

Consumer 3 consumed n at index 6 at time 2021-10-14 12:47:27.098168

Producer 1 inserted o at index 1 at time 2021-10-14 12:47:27.098481

Consumer 2 consumed at index 7 at time 2021-10-14 12:47:27.098734

Consumer 1 consumed W at index 0 at time 2021-10-14 12:47:27.098959

Producer 3 inserted ! at index 2 at time 2021-10-14 12:47:27.099189

Producer 2 inserted r at index 3 at time 2021-10-14 12:47:27.099453

Producer 3 inserted @ at index 4 at time 2021-10-14 12:47:27.099668

Consumer 1 consumed o at index 1 at time 2021-10-14 12:47:27.099921

Consumer 1 consumed ! at index 2 at time 2021-10-14 12:47:27.100330

Consumer 1 consumed r at index 3 at time 2021-10-14 12:47:27.100543

Consumer 1 consumed @ at index 4 at time 2021-10-14 12:47:27.100735

Producer 1 inserted r at index 5 at time 2021-10-14 12:47:27.100926

Consumer 3 consumed r at index 5 at time 2021-10-14 12:47:27.101164

Producer 1 inserted l at index 6 at time 2021-10-14 12:47:27.101369

Consumer 1 consumed l at index 6 at time 2021-10-14 12:47:27.101576

Producer 2 inserted e at index 7 at time 2021-10-14 12:47:27.101809

Consumer 2 consumed e at index 7 at time 2021-10-14 12:47:27.102045

Producer 2 inserted W at index 0 at time 2021-10-14 12:47:27.102256

Producer 1 inserted d at index 1 at time 2021-10-14 12:47:27.102461

Consumer 3 consumed W at index 0 at time 2021-10-14 12:47:27.102661

Producer 2 inserted e at index 2 at time 2021-10-14 12:47:27.102879

Producer 2 inserted at index 3 at time 2021-10-14 12:47:27.103073

Consumer 2 consumed d at index 1 at time 2021-10-14 12:47:27.103258

Producer 2 inserted A at index 4 at time 2021-10-14 12:47:27.103442

Consumer 3 consumed e at index 2 at time 2021-10-14 12:47:27.103620

Producer 2 inserted r at index 5 at time 2021-10-14 12:47:27.103858

Consumer 2 consumed at index 3 at time 2021-10-14 12:47:27.104087

Consumer 3 consumed A at index 4 at time 2021-10-14 12:47:27.104495

Consumer 3 consumed r at index 5 at time 2021-10-14 12:47:27.104805

Producer's output:

HelloWorld HereWe Are Again !@

Consumer's output:

HelloWorld HereWe Are Again !@

