
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L20
Virtual Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Questions from last time
• Multi-level page table, slightly slower but ..

• Do all pages have a copy on the disk?
• Where is virtual memory? Its virtual. Main memory-Secondary memory interface.

• How can we get the reference string that is
representative of actual operation? Our reference strings are chosen for
illustration purposes.

• Advantage of using a Dirty bit?
• Exploiting spatial and temporal locality

– Bringing in a page of information, we are already exploiting spatial locality.
– LRU assumes some temporal locality.

• Can the stock market be predicted? Jim Simons: 30 years, 66%/y

https://www.wsj.com/articles/the-making-of-the-worlds-greatest-investor-11572667202

3

FAQ
• Can more than one page loaded into memory when a

process starts? prefetching

• Effective Access Time (EAT)
= (1 – p) x memory access time

+ p (page-fault service time)
• LRU vs OPT

– OPT is theoretical, not practice
– LRU: need to keep track of which page was the least

recently used.
– Approximate versions LRU:

• Minimal: Reference bit
• Some schemes use Reference bit + more

4

Least Recently Used (LRU) Algorithm
• Use past knowledge rather than future
• Replace page that has not been used in the most amount

of time (4th access – page 7 is least recently used …_)
• Associate time of last use with each page

• 12 faults – better than FIFO (15) but worse than OPT (9)
• Generally good algorithm and frequently used
• But how to implement it by tracking the page usage?

Track carefully!

5

LRU Algorithm: Implementations
Possible implementations
• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter

– When a page needs to be changed, look at the counters
to find smallest value
• Search through table needed

• Stack implementation
– Keep a stack of page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– Each update expensive
– No search for replacement needed (bottom is least recently used)

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

6

Use Of A Stack to Record Most Recent Page References

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

Too slow if done in software

Least recently used ->

Most recently used ->

This shows tracking stack,
not actual frames.

7

Use Of A Stack to Record Most Recent Page References

LRU->

MRU->

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3

7 0 1 2 0 3 0 4 2 3 0

7 0 1 2 2 3 0 4 2 2

Earlier problem (upper) revisited.
This shows tracking stack, not actual frames.

8

Ref bit + history shift register
LRU approximation
Ref bit: 1 indicates used, Shift register records history

Ex: 3-period history
Ref Bit Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000

1 1001 0001 1100 1000

0 0110 0011 0011 0001

• Interpret 8-bit bytes as unsigned integers
• Page with the lowest number is the LRU page: replace.

Examples:
• 00000000 : Not used in last 8 periods
• 01100101 : Used 4 times in the last 8 periods
• 11000100 used more recently than 01110111

9

Second-chance (clock) algorithm
• Second-chance algorithm (“clock algo”)

i. Round robin selection of victim page and
ii. recently used page gets second chance.
– Clock replacement (using circular queue): hand as a

pointer
– Page referenced: reference bit = 1
– Page replacement: Consider next page

• Reference bit = 0 -> replace it
• reference bit = 1 then: give it another chance

– set reference bit 0, leave page in memory
– consider next page, subject to same rules

10

Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

• Clock replacement: hand
as a pointer

• Consider next page
– Reference bit = 0 ->

replace it
– reference bit = 1 then:

• set reference bit 0, leave
page in memory

• consider next page,
subject to same rules

(a) Change to 0, give it
another chance
(b) Already 0. Replace page

11

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to

replace
2. (0, 1) not recently used but modified – not quite as good,

must write out before replacement
3. (1, 0) recently used but clean – probably will be used again

soon
4. (1, 1) recently used and modified – probably will be used

again soon and need to write out before replacement
When page replacement called for, use the clock scheme

but use the four classes replace page in lowest non-empty
class

– Might need to search circular queue several times

12

Clever Techniques for enhancing Perf
• Keep a buffer (pool) of free frames, always

– Then frame available when needed, not found at fault
time

– Read page into free frame and select victim to evict
and add to free pool

– When convenient, evict victim
• Keep list of modified pages

– When backing store is otherwise idle, write pages there
and set to non-dirty (being proactive!)

• Keep free frame previous contents intact and
note what is in them
– If referenced again before reused, no need to load

contents again from disk
– Generally useful to reduce penalty if wrong victim

frame selected

13

Buffering and applications

• Some applications (like databases) often
understand their memory/disk usage better
than the OS
– Provide their own buffering schemes
– If both the OS and the application were to buffer

• Twice the I/O is being utilized for a given I/O

– OS may provide “raw access” disk to special
programs without file system services.

14

Allocation of Frames

15

Allocation of Frames

How to allocate frames to processes?
– Each process needs minimum number of frames

Depending on specific needs of the process

– Maximum of course is total frames in the system

• Two major allocation schemes
– fixed allocation
– priority allocation

• Many variations

16

Fixed Allocation
• Equal allocation – For example, if there are 100 frames

(after allocating frames for the OS) and 5 processes, give
each process 20 frames
– Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of
process (need based)

– Dynamic as degree of multiprogramming, process sizes change

Example:
Processes P1,P2𝑠!= size of process 𝑝!

𝑆 = ∑𝑠!
𝑚 = total number of frames

𝑎! = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝! =
𝑠!
𝑆 ×𝑚

m = 62
s1 =10
s2 =127
𝑎"= "#

"$%
×62 ≈ 4

𝑎&="&%
"$%

×62 ≈ 57“to each according to his need” Carl Marx, Acts 4:32-35

17

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames or
– select for replacement a frame from a process

with lower priority number

18

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another
– But then process execution time can vary greatly
– But greater throughput, so more common

• Local replacement – each process selects from
only its own set of allocated frames
– More consistent per-process performance
– But possibly underutilized memory

19

Problem: Thrashing
• If a process does not have “enough” pages, the

page-fault rate is very high
– Page fault to get page
– Replace existing frame
– But quickly need replaced frame back
– This leads to:

• Low CPU utilization, leading to
• Operating system thinking that it needs to increase the

degree of multiprogramming leading to
• Another process added to the system

• Thrashing º a process is busy swapping pages in
and out

20

Thrashing (Cont.)

21

Demand Paging and Thrashing
• Why does demand paging work?

Locality model
– Process migrates from one locality to another
– Localities may overlap

• Why does thrashing occur in a process?

size of locality > total memory size allocated

– Limit effects by using local or priority page replacement

22

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

p
a
g
e
 n

u
m

b
e
rs

m
e
m

o
ry

 a
d
d
re

ss

execution time

23

Working-Set Model
• D º working-set window º a fixed number of page references

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent D (varies in time)

– if D too small, working set will not encompass entire locality
– if D too large, working set will encompass several localities
– ws is an approximation of locality

• D = SWSSi º total demand for frames for all processes
– if D > mÞ Thrashing

– Policy if D > m, then suspend or swap out one of the processes

Example: Δ = 10 page references

M is number of frames

24

Page-Fault Frequency Approach
• More direct approach than WSS
• Establish “acceptable” page-fault frequency (PFF)

rate for a process and use local replacement policy
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

number of frames

increase number
of frames

upper bound

lower bound
decrease number
of frames

p
a
g
e
-f

a
u
lt

ra
te

25

Working Sets and Page Fault Rates
• Direct relationship between working set of a process and its page-

fault rate

• Working set changes over time

• Peaks and valleys over time

Peaks occur at locality changes: 3 working sets

26

Memory-Mapped Files
• Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory
• File is then in memory instead of disk
• A file is initially read using demand paging

– A page-sized portion of the file is read from the file system into a
physical page

– Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

• Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

• But when does written data make it to disk?
– Periodically and / or at file close() time
– For example, when the pager scans for dirty pages

27

Memory Mapped Files

process A
virtual memory

1

1

1 2 3 4 5 6

2
3

3

4
5

5

4
2

6
6

1
2
3
4
5
6

process B
virtual memory

physical memory

disk file Disk File uses 6 blocks
Page tables used for mapping

29

Allocating Kernel Memory

• Treated differently from user memory
• Often allocated from a free-memory pool
– Kernel requests memory for structures of varying sizes

• Process descriptors, semaphores, file objects etc.
• Often much smaller than page size

– Some kernel memory needs to be contiguous
• e.g. for device I/O

– approaches (skipped)

30

Other Considerations -- Prepaging

• Prepaging
– To reduce the large number of page faults that

occurs at process startup
– Prepage all or some of the pages a process will

need, before they are referenced
– But if prepaged pages are unused, I/O and memory

was wasted
– Assume s pages are prepaged and fraction α of the

pages is used
• Is cost of s * α saved pages faults > or < than the cost of

prepaging s * (1- α) unnecessary pages?
• α near zero Þ greater prepaging loses

31

Other Issues – Page Size
• Sometimes OS designers have a choice

– Especially if running on custom-built CPU
• Page size selection must take into consideration:

– Fragmentation
– Page table size
– I/O overhead
– Number of page faults
– Locality
– TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

• On average, growing over time

32

Page size issues – TLB Reach

• TLB Reach - The amount of memory accessible
from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the mapping of the working set of each
process is stored in the TLB
– Otherwise there is a high degree of page faults

33

Other Issues – Program Structure
• Program structure

– int[128,128] data; i: row, j: column
– Each row is stored in one page
– Program 1
for (j = 0; j <128; j++)

for (i = 0; i < 128; i++) multiple pages

data[i,j] = 0;

128 x 128 = 16,384 page faults

– Program 2 inner loop = 1 row = 1 page
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)same page

data[i,j] = 0;

128 page faults

34

Other Issues – I/O interlock

• I/O Interlock – Pages must
sometimes be locked into
memory

• Consider I/O - Pages that
are used for copying a file
from a device must be
locked from being selected
for eviction by a page
replacement algorithm

• Pinning of pages to lock
into memory

35

Example: MS Windows
• Uses demand paging with clustering. Clustering brings

in pages surrounding the faulting page
• Processes are assigned working set minimum and

working set maximum
• Working set minimum is the minimum number of

pages the process is guaranteed to have in memory
• A process may be assigned as pages up to its working

set maximum
• When the amount of free memory in the system falls

below a threshold, automatic working set trimming is
performed to restore the amount of free memory

• Working set trimming removes pages from processes
that have pages in excess of their working set
minimum

36 36

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

File-system
Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

37

File-Systems

Ch 13: File system interface
• File Concept, types
• Attributes, Access Methods, operations, Protection
• Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation
Ch 15: File system internals
• Storage abstraction: File system metadata (size, free lists), File

metadata(attributes, disk block maps), data blocks
• Allocation of blocks to files: contiguous, sequential, linked list

allocation, indexed
• In memory info: Mount table, directory structure cache, open file

table, buffers
• Unix: inode numbers for directories and files
Ch 11: Mass storage

38

File Systems

39

File types

Type used by programs not OS

40

File Attributes
• Name – only information kept in human-readable

form
• Identifier – unique tag (number) identifies file

within file system
• Type – needed for systems that support different

types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing,

executing
• Time, date, and user identification – data for

protection, security, and usage monitoring
• Information about files are kept in the directory

structure, which is maintained on the disk
• Many variations, including extended file attributes

such as file checksum

41

Disk Structure
• Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against

failure
• Partition can be formatted with a file system
• Entity containing file system known as a volume
• Each volume containing file system also tracks that

file system’s info in device directory or volume
table of contents

• As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

42

Directory Structure

• A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

43

Operations Performed on Directory

• Traverse the file system
• List a directory
• Search for a file
• Create/Delete/Rename a file

44

Directory Organization

• Efficiency – locating a file quickly
• Naming – convenient to users
– Two users can have same name for different

files
– The same file can have several different

names

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

The directory is organized logically to obtain

45

Directory Organization

• Single level directory
• Two-level directory
• Tree-structured directories:
– efficient grouping, searching,
– absolute or relative path names

• Acyclic graph directories
– Shared sub-directory, files

46

File System Mounting

• A file system must be mounted before it can be
accessed

• A unmounted file system is mounted at a mount point
• Merges the file system

root

47

File Sharing

• Sharing of files on multi-user systems is desirable
• Sharing may be done through a protection scheme
• On distributed systems, files may be shared across a

network
• Network File System (NFS) is a common distributed

file-sharing method
• If multi-user system

– User IDs identify users, allowing permissions and
protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

– Owner of a file / directory
– Group of a file / directory

48

Protection: Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users on Unix / Linux

RWX
a) owner access 7 Þ 1 1 1

RWX
b) group access 6 Þ 1 1 0

RWX
c) public access 1 Þ 0 0 1

• Ask manager to create a group (unique name), say
G, and add some users to the group.

• For a particular file (say game) or subdirectory,
define an appropriate access.

Attach a group to a file
chgrp G game

49

Windows 7 Access-Control List Management

50

A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name

