
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L24
Mass Storage

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ

• LAN: local area network
• WAN: wide area network consisting of many LANs
• Pagememory vs blocks/sectorsdisk

• Difference among a file, its inode, and inode number?
– inode number is the index of the inode in the inode table

• Hard links vs symbolic links:
– Hard links refer to the same inode
– Symbol link file is a pointer

3 3

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Reliability &
RAIDs

• Various sources

4

RAID Techniques
• Striping uses multiple disks in parallel by splitting

data: higher performance (ex. RAID 0)
• Mirroring keeps duplicate of each disk: higher

reliability (ex. RAID 1)
• Block parity: One Disk hold parity block for other

disks. A failed disk can be rebuilt using parity. Wear
leveling if interleaved (RAID 5, double parity RAID 6).

• Ideas that did not work: Bit or byte level level striping (RAID 2, 3) Bit level
Coding (RAID 2), dedicated parity disk (RAID 4).

• Nested Combinations:
– RAID 01: Mirror RAID 0
– RAID 10: Multiple RAID 1, striping
– RAID 50: Multiple RAID 5, striping
– others

Ch 11 + external

5

RAID
• Replicate data for availability
– RAID 0: no replication, data split across disks
– RAID 1: mirror data across two or more disks

• Google File System replicated its data on three disks, spread across
multiple racks

– RAID 5: split data across disks, with redundancy to recover
from a single disk failure

– RAID 6: RAID 5, with extra redundancy to recover from two
disk failures

6

Failures and repairs

• If a disk has mean time to failure (MTTF) of
100,000 hour.
– Failure rate is 1/100,000 per hour.

• May be estimated using historical data
• If a disk has a bad data, it may be repaired
– Copy data from a backup
– Reconstruct data using available data and some

invariant property.

• If data cannot be repaired, it is lost.

7

RAID 0: Striping

• Additional disks provide additional storage
• No redundancy

8

RAID 1: Mirroring

• Replicate writes to both disks
• Reads can go to either disk
• If they fail independently,

consider disk with 100,000
hour mean time to failure and
10 hour mean time to repair
– probability that two will fail

within 10 hours =
(2x10) /100,0002

– Mean time to data loss is
100,0002/(2x10) = 500x106

hours, or 57,000 years!

9

Parity
• Data blocks: Block1, block2, block3,
• Parity block: Block1 xor block2 xor block3 …

10001101 block1
01101100 block2
11000110 block3

00100111 parity block (ensures even number of 1s)

• Can reconstruct any missing block from the others Error-
control coding identifies that a block is bad.

10

RAID 5: Rotating Parity

Time to rebuild depends
on disk capacity and data
transfer rate

Parity blocks Ap, Bp, Cp, Dp
distributed across disks.

11

Read Errors and RAID recovery
• Example: RAID 5

– Each bit has 10-15 probability of being bad.
– 10 one-TB disks, and 1 disk fails
– Read remaining disks to reconstruct missing data

• Probability of an error in reading 9 TB disks =
10-15*total bits =10-15* (9 disks * 8 bits * 1012 bytes/disk)
= 7.2% Thus recovery probability = 92.8%

• Even better:
– RAID-6: two redundant disk blocks parity plus Reed-Solomon code

– Can work even in presence of one bad disk, can recover from 2 disk
failures

– Scrubbing: read disk sectors in background to find and fix latent
errors

12 12

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Big Data: HDFS
and map-reduce

• Various sources, mostly external

13

Hadoop: Distributed Framework for Big Data

Big Data attributes:
• Large volume: TB -> PB varies with Kryder’s law: disk density doubles / 13 months

• Geographically Distributed: minimize data movement
• Needs: reliability, analytic approaches
History:
• Google file system 2003 and Map Reduce 2004 programming

lang

• Hadoop to support distribution for the Yahoo search
engine project ‘05, given to Apache Software
Foundation ‘06

• Hadoop ecosystem evolves with Yarn ’13 resource management,
Pig ’10 scripting, Spark ‘14 distributed computing engine. etc.

• The Google file system by Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (2003)
• MapReduce: Simplified Data Processing on Large Clusters. by Jeffrey Dean and Sanjay Ghemawat (2004)

14

Hadoop: Distributed Framework for Big Data

Recent development.
• Big data: multi-terabyte or more data for an app
• Distributed file system
– Reliability through replication (Fault tolerance)

• Distributed execution
– Parallel execution for higher performance

15

Hadoop: Core components

Hadoop (originally): HDFS + MapReduce
• HDFS: A distributed file system designed to

efficiently allocate data across multiple
commodity machines, and provide self-healing
functions when some of them go down

• MapReduce: A programming framework for
processing parallelizable problems across huge
datasets using a large number of commodity
machines.
• Commodity machines: lower performance per machine, lower cost, perhaps lower reliability compared with

special high-performance machines.

16

Challenges in Distributed Big Data

Common Challenges in Distributed Systems
• Node Failure: Individual computer nodes may

overheat, crash, have hard drive failures, or run out
of memory or disk space.

• Network issues: Congestion/delays (large data volumes),
Communication Failures.

• Bad data: Data may be corrupted, or maliciously or
improperly transmitted.

• Other issues: Multiple versions of client software
may use slightly different protocols from one
another.

• Security

17

HDFS Architecture

Hadoop Distributed File System (HDFS):
• HDFS Block size: 64-128 MB ext4: 4KB

• HDFS file size: “Big”
• Single HDFS FS cluster can span many nodes possibly

geographically distributed. datacenters-racks-blades

• Node: system with CPU and memory
Metadata (corresponding to superblocks, Inodes)
• Name Node: metadata giving where blocks are

physically located
Data (files blocks)
• Data Nodes: hold blocks of files (files are distributed)

18

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Secondary Name node
If primary fails.

Data is distributed and
replicated.

Slave nodes have been
renamed worker nodes.

19

HDFS Write operation

CERN

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

Supplies data
block locations

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

20

HDFS Fault-tolerance

• Disks use error detecting codes to detect
corruption.

• Individual node/rack may fail.

• Data Nodes (on slave nodes):
– data is replicated. Default is 3 times. Keep a copy far

away.
– Send periodic heartbeat (I’m OK) to Name Nodes.

Perhaps once every 10 minutes.
– Name node creates another copy if no heartbeat.

21

HDFS Fault-tolerance

Name Node (on master node) Protection:
• Transaction log for file deletes/adds, etc. Creation

of more replica blocks, when necessary, after a
Data Node failure

• Standby name node: namespace backup
– In the event of a failover, the Standby will ensure that it has read all of

the edits from the Journal Nodes and then promotes itself to the Active
state

– Implementation/delay version dependent

Name Node metadata is in RAM as well as checkpointed on disk.
On disk the state is stored in two files:
• fsimage: Snapshot of file system metadata
• editlog: Changes since last snapshot

22

HDFS Command line interface

• hadoop fs –help
• hadoop fs –ls : List a directory
• hadoop fs mkdir : makes a directory in HDFS
• hadoop fs –rm : Deletes a file in HDFS
• copyFromLocal : Copies data to HDFS from local

filesystem
• copyToLocal : Copies data to local filesystem
• Java code can read or write HDFS files (URI) directly

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

HDFS is on top of a local
file system

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

23

Distributing Tasks

MapReduce Engine:
• JobTracker splits up the job into smaller

tasks(“Map”) and sends it to the TaskTracker
process in each node.

• TaskTracker reports back to the JobTracker node
and reports on job progress, sends partial results
(“Reduce”) or requests new jobs.

• Tasks are run on local data, thus avoiding
movement of bulk data.

• Originally developed for search engine
implementation.

24

Hadoop Ecosystem Evolution

• Hadoop YARN: A framework for job scheduling and cluster resource management, can
run on top of Windows Azure or Amazon S3.

• Apache spark is more general, faster and easier to program than MapReduce.
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing, Berkeley, 2012

25 25

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

Virtualization &
Containerization

Slides based on
• Various sources

26

Virtualization

• Why we need virtualization?
• The concepts and terms
• Brief history of virtualization
• Types of virtualization
• Implementation Issues
• Containers

Ch 18 + external

27

Isolation and resource allocation
Isolation:
• Process: Isolated address space
• Container: Isolated set of processes, files and network
• Virtual Machines (VM): Isolated OSs
• Physically isolated machines
Resource allocation:
• Resources need to be allocated and managed

appropriately.

28

Virtualization

• A Virtual scheme provides a simpler perspective of a
Physical scheme. Needs mapping.
– Example: each process a separate virtual address space.
– OS allocates physical memory and disk space and handles mapping.

• System (“machine”) virtualization
– A machine needs its own CPU, memory, storage, I/O to run its OS

and apps. “Machine” = {CPU, memory, storage, I/O, OS, apps}
– Needs to be isolated from other machines.
– “Virtual machines” allocated resources from physical hardware,

with allocation done by a Virtual Machine Monitor (VMM or
hypervisor.

– A virtual machine can be “migrated” from one physical system to
another.

29

Virtualization

30

Virtualization

• Processors have gradually become very powerful
• Dedicated servers can be very underutilized (5-15%)
• Virtualization allow a single server to support several

virtualized servers: typical consolidation ratio 6:1

• Power cost a major expense for data centers
– Companies frequently locate their data centers in the middle of

nowhere where power cost is low

• If a hardware server crashes, would be nice to migrate the
load to another one.

• A key component of cloud computing

31

Virtual Machines (VM)

• Virtualization technology enables a single PC/server to
simultaneously run multiple Virtual Machines, with
different operating systems or multiple sessions of a single
OS.

• A machine with virtualization can host many applications,
including those that run on different operating systems, on
a single platform.

• The host operating system can support a number of virtual
machines, each of which has the characteristics of a
particular OS.

• The software that enables virtualization is a virtual
machine monitor (VMM), or hypervisor.

32

Virtual Machines (VM)

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

Traditional
physical machine

Hypervisor with
virtual machines

OS

OS OS OS

33

Kinds of Virtual Systems

Virtualization
• Hypervisor based

– Full virtualization: bare metal hypervisor
– Para virtualization: modified guest OS
– Host OS virtualization

• Container system: multiple user space instances
• Environment virtualization

– Java virtual machine, Dalvic virtual machine

• Software simulation of hardware/ISA
– Android JDK
– SoftPC etc.

• Emulation using microcode

34

Brief history

• Early 1960s IBM experimented with two independently
developed hypervisors - SIMMON and CP-40

• Common CPU modes: user and supervisor (Privileged)
• In 1974, Popek and Goldberg published a paper which listed

what conditions a computer architecture should satisfy to
support virtualization efficiently
– Privileged instructions: Those that trap if the processor is in user mode

and do not trap if it is in system mode (supervisor mode).
– Sensitive instructions: that attempt to change the configuration of

resources in the system or whose behavior or result depends on the
configuration of resources

– Theorem. For any conventional third-generation computer, an effective
VMM may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

– The x86 architecture that originated in the 1970s did not meet these
for requirements for decades.

•

35

“Strictly Virtualizable”

A processor or mode of a processor is strictly virtualizable if,
when executed in a lesser privileged mode:

• all instructions that access privileged state trap
• all instructions either trap or execute identically

36

Brief history (recent)

• Stanford researchers developed a new hypervisor and then
founded VMware
– first virtualization solution for x86 in 1999
– Linux, windows

• Others followed
– Xen, 2003 University of Cambridge, Xen Project

community
– KVM, 2007 startup/Red Hat
– VirtualBox (Innotek GmbH/Sun/Oracle) , 2007
– Hyper-V (Microsoft), 2008

37

Implementation of VMMs
– Type 1 hypervisors - Operating-system-like software built

to provide virtualization. Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems that
provide standard functions as well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard
operating systems but provide VMM features to guest
operating systems
• Including VMware Workstation and Fusion, Parallels Desktop, and Oracle

VirtualBox

38

Implementation of VMMs

https://microkerneldude.files.wordpress.com/2012/01/type1-vs-2.png

A higher layer uses services of the lower layers.

39

Market share

All 3 are Type 1 http://www.virtualizationsoftware.com/top-5-enterprise-type-1-hypervisors/

40

User mode and Kernel (supervisor) mode

• Special instructions:
• Depending on whether it is executed in kernel/user mode

– “Sensitive instructions”

• Some instructions cause a trap when executed in user-
mode
– “Privileged instructions”

• A machine is virtualizable only if sensitive instructions are a
subset of privileged instructions
– Intel’s 386 did not always do that. Several sensitive 386 instructions

were ignored if executed in user mode.

• Fixed in 2005 virtualization may need to be enabled using BIOS

– Intel CPUs: VT (Virtualization Technology)
– AMD CPUs: SVM (Secure Virtual Machine)

41

Virtualization support

• Terminology:
– Guest Operating System

• The OS running on top of the hypervisor

– Host Operating System
• For a type 2 hypervisor: the OS that runs on the hardware ¨executions

• Create environments in which VMs can be run
• When a guest OS is started in an environment, continues to

run until it causes an exception and traps to the hypervisor
– For e.g., by executing an I/O instruction

• Set of operations that trap is controlled by a hardware bit
map set by hypervisor
– trap-and-emulate approach becomes possible

42

Implementation of VMMs

What problems do you see?
• What mode does hypervisor run in? Guest OSs?
• Are Guest OSs aware of hypervisor?
• How is memory managed?
• How do we know what is the best choice?

43

Virtual Machine (VM) as a software construct

• Each VM is configured with some number of processors,
some amount of RAM, storage resources, and connectivity
through the network ports.

• Once the VM is created it can be activated on like a physical
server, loaded with an operating system and software
solutions, and used just like a physical server.

• Unlike a physical server, VM only sees the resources it has
been configured with, not all of the resources of the
physical host itself.

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

44

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,
– how many virtual processors (vCPUs)
– how much RAM is allocated,
– which I/O devices the VM has access to,
– how many network interface cards (NICs) are in the virtual server
– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

45

Virtualization benefits

• Run multiple, OSes on a single machine
– Consolidation, app dev, …

• Security: Host system protected from VMs, VMs
protected from each other
– Sharing though shared file system volume, network communication

• Freeze, suspend, running VM
– Then can move or copy somewhere else and resume

• Live migration

– Snapshot of a given state, able to restore back to that state
– Clone by creating copy and running both original and copy

• Hence – cloud computing

46

Building Block – Trap and Emulate

• VM needs two modes: both in real user mode
– virtual user mode and virtual kernel mode

• When Guest OS attempts to execute a privileged
instruction, what happens?
– Causes a trap
– VMM gains control, analyzes error, executes operation

as attempted by guest
– Returns control to guest in user mode
– Known as trap-and-emulate

• Trap-and-emulate was the technique used for
implementing floating point instructions in CPUs
without floating point coprocessor

47

Handling sensitive instructions

• Some CPUs didn’t have clean separation between
privileged and non-privileged instructions
– Sensitive instructions

• Consider Intel x86 popf instruction
• If CPU in privileged mode -> all flags replaced
• If CPU in user mode -> on some flags replaced

– No trap is generated

• Binary translation (complex) solves the problem
1. If guest VCPU is in user mode, guest can run instructions natively
2. If guest VCPU in kernel mode (guest believes it is in kernel mode)

1. VMM examines every instruction guest is about to execute by reading a
few instructions ahead of program counter

2. Special instructions translated into new set of instructions that perform
equivalent task (for example changing the flags in the VCPU)

3. Cached translations can reduce overhead
• Not needed in newer processors with virtualization

support.

48

Type 1 Hypervisors

• Run on top of bare metal
• Guest OSs believe they are running on bare metal, are unaware of

hypervisor
– are not modified
– Better performance

• Choice for data centers
• Consolidation of multiple OSes and apps onto less HW
• Move guests between systems to balance performance
• Snapshots and cloning

• Hypervisor creates runs and manages guest OSes
– Run in kernel mode
– Implement device drivers
– provide traditional OS services like CPU and memory management

• Examples: VMWare esx (dedicated) , Windows with Hyper-V (includes
OS)

49

Type 2 Hypervisors

• Run on top of host OS
• VMM is simply a process, managed by host OS
– host doesn’t know they are a VMM running guests

• poorer overall performance because can’t take
advantage of some HW features

• Host OS is just a regular one
– Individuals could have Type 2 hypervisor (e.g.

Virtualbox) on native host (perhaps windows), run one
or more guests (perhaps Linux, MacOS)

50

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.
– Introduced and developed by Xen

• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support
– allowed virtualization of older x86 CPUs without binary

translation
– Not used by Xen on newer processors

51

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest
– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like

native operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs
– Some add fairness aspect

52

CPU Scheduling (cont)

• Oversubscription of CPUs means guests may get
CPU cycles they expect
– Time-of-day clocks may be incorrect
– Some VMMs provide application to run in each guest to

fix time-of-day

