
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L25
Virtualization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
• Parity bit(s): Extra bits obtained using data bits. Used for

error detection/correction.
• Ex: Parity biti = word0 biti ⊕ .. ⊕ wordn biti

= bit needed make 1’s even
– Block parity: bit-by-bit parity for all disks
– RAID 5, 6: Parity blocks are distributed among the disks.

• RAID recovery:
– RAID 5,6: rebuild using available data, parity info
– RAID 1: Copy info from good mirror

• How do we know a disk is corrupted? Use of CRC redundancy at a lower level.

• There are many RAID configurations are possible: using
combinations of striping, mirroring, parity.

https://ww1.microchip.com/downloads/en/AppNotes/00730a.pdf

3

RAIDs: Nested systems
Nested systems: combine striping with mirroring/parity
• RAID 01: Two RAID 0 systems (with striping) mirrored
• RAID 10: Multiple RAID 1 systems (with mirroring) striped.

4

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Name Node: metadata giving
where blocks are physically located
Data Nodes: hold blocks of files
(files are distributed

Secondary Name node
If primary fails

Q. What do I need to know? motivation, approaches, concepts

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

5

HDFS

HDFS fault tolerance
• Three copies of each data block.
• The Name Node recreates a Data Node if no

heartbeat is received from it.
• The Standby Name Node takes over if the Name Node

goes down.

Not needed: move massive data
• Most computation is done locally in parallel and

partial results are transmitted.

6 6

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Virtualization
Q. Do we really need to know about virtualization?
Yes, absolutely.

Slides based on
• Various sources

7

Virtualization

• A Virtual scheme provides a simpler perspective of a
Physical scheme. Needs mapping.
– Example: each process a separate virtual address space and

resource allocation.
– OS allocates physical memory and disk space and handles mapping.

• System (“machine”) virtualization
– A machine needs its own CPU, memory, storage, I/O to run its OS

and apps. “Machine” = {CPU, memory, storage, I/O, OS, apps}
– Needs to be isolated from other machines.
– Can “virtual machines” be allocated resources from physical

hardware, with allocation done by a Virtual Machine Monitor
(VMM or hypervisor)?

– Can a virtual machine be “migrated” from one physical system to
another?

8

Virtualization: Why?

• Processors have gradually become very powerful
• Dedicated servers can be very underutilized (5-15%)
• Virtualization allow a single server to support several

virtualized servers: typical consolidation ratio 6:1

• Power cost a major expense for data centers
– Companies frequently locate their data centers in the middle of

nowhere where power cost is low

• If a hardware server crashes, would be nice to migrate the
load to another one.

• A key component of cloud computing

9

Virtual Machines (VM)

• Virtualization technology enables a single PC/server to
simultaneously run multiple operating systems or multiple
sessions of a single OS.

• A machine with virtualization can host many applications,
including those that run on different operating systems, on
a single platform.

• The host operating system (or VMM) can support a number
of virtual machines, each of which has the characteristics of
a particular OS.

• The software that enables virtualization is a virtual
machine monitor (VMM), or hypervisor.

10

Virtual Machines (VM)

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

Traditional
physical machine

Hypervisor with
virtual machines

OS

OS OS OS

I have replaced the word kernel by OS.

11

“Strictly Virtualizable”

A processor or mode of a processor is strictly virtualizable if,
when executed in a lesser privileged mode:

• all instructions that access privileged state trap
• all instructions either trap or execute identically
• Intel, AMD processors have mode that enables such

virtualization.
– Intel CPUs: VT (Virtualization Technology)
– AMD CPUs: SVM (Secure Virtual Machine)

12

Implementation of VMMs
– Type 1 hypervisors - Operating-system-like software built

to provide virtualization. Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems that
provide standard functions as well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard
operating systems but provide VMM features to guest
operating systems
• Including VMware Workstation and Fusion, Parallels Desktop, and Oracle

VirtualBox

13

Implementation of VMMs

https://microkerneldude.files.wordpress.com/2012/01/type1-vs-2.png

A higher layer uses services of the lower layers.

Where does
virtualbox fit?

14

OS vs Hypervisor (VMM)
• Isolation

• OS isolates processes from each other
• Hypervisor isolate VMs from each other

• Resource allocation
• OS: allocates resources to processes, logical to physical mapping
• Hypervisor allocates resources to Virtual Machines, “physical” to

hardware mapping. Resources: CPU, Memory, Disk, mouse/keyboard, network address ..

• Concurrency
– OS can run processes concurrently
– Hypervisor can run VMs concurrently

• Access to hardware resources
– OS provides as a service
– Hypervisor provides directly (type 1) or indirectly (type 2)

15

Virtualization support

• Terminology:
– Guest Operating System

• The OS running on top of the hypervisor (both types)

– Host Operating System
• For a type 2 only: the OS that runs on the hardware ¨executions

• Create isolated environment in which VMs can be run
• When a guest OS is started in an isolated environment

continues to run until it causes an exception and traps to
the hypervisor
– For e.g. by executing an I/O instruction

• Set of operations that trap is controlled by a hardware bit
map set by hypervisor
– trap-and-emulate approach becomes possible

16

Virtual Machine (VM) as a software construct

• Each VM is configured with
– some number of processors,
– some amount of RAM, storage resources,
– and connectivity through the network ports

• Once the VM is created it can be
– activated on like a physical server, loaded with an operating system

and software solutions, and used just like a physical server

• But unlike a physical server,
– VM only sees the resources it has been configured with, not all of

the resources of the physical host itself

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

Half a CPU?

17

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,
– how many virtual processors (vCPUs)
– how much RAM is allocated,
– which I/O devices the VM has access to,
– how many network interface cards (NICs) are in the virtual server
– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

18

Virtualization benefits

• Run multiple, OSes on a single machine
– Consolidation, app dev, …

• Security: Host system protected from VMs, VMs
protected from each other
– Sharing though shared file system volume, network communication

• Freeze, suspend, running VM
– Then can move or copy somewhere else and resume

• Live migration

– Snapshot of a given state, able to restore back to that state
– Clone by creating copy and running both original and copy

• Hence – cloud computing

19

Building Block – Trap and Emulate

• When Guest OS attempts to execute a privileged
instruction, what happens?
– Causes a trap
– VMM gains control, analyzes error, executes operation

as attempted by guest directly if type 1, indirectly if type 2

– Returns control to guest in user mode
– Known as trap-and-emulate

• Trap-and-emulate was the technique used for
implementing floating point instructions in CPUs
without floating point coprocessor

20

Sensitive instructions

• Some CPUs didn’t have clean separation between privileged and
non-privileged instructions
– Sensitive instructions

• Consider Intel x86 popf instruction
• If CPU in privileged mode -> all flags replaced
• If CPU in user mode -> on some flags replaced

– No trap is generated
• Binary translation (complex) solves the problem

1. If guest VCPU is in user mode, guest can run instructions natively
2. If guest VCPU in kernel mode (guest believes it is in kernel mode)

1. VMM examines every instruction guest is about to execute by reading a few
instructions ahead of program counter

2. Special instructions translated into new set of instructions that perform
equivalent task (for example changing the flags in the VCPU)

3. Cached translations can reduce overhead
• Not needed in newer (>2005) processors with virtualization

support. Support may need to be enabled.

– Intel CPUs: VT (Virtualization Technology)
– AMD CPUs: SVM (Secure Virtual Machine)

21

Type 1 Hypervisors

• Run on top of bare metal
• Guest OSs believe they are running

on bare metal, are unaware of hypervisor
– are not modified
– Better performance

• Choice for data centers
• Consolidation of multiple OSes and apps onto less HW
• Move guests between systems to balance performance
• Snapshots and cloning

• Hypervisor creates runs and manages guest OSes
– Run in kernel mode
– Implement device drivers
– provide traditional OS services like CPU and memory management

• Examples: VMWare esx (dedicated) , Windows with Hyper-V (includes OS)

22

Type 2 Hypervisors

• Run on top of a host OS
• VMM is simply a process, managed by host OS

– host doesn’t know they are a VMM running guests

• Poorer overall performance because can’t take advantage
of some HW features

• Host OS is just a regular one
– Individuals could have Type 2 hypervisor (e.g. Virtualbox) on native

host (perhaps windows), run one or more guests (perhaps Linux,
MacOS)

23

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.
– Introduced and developed by Xen

• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support
– allowed virtualization of older x86 CPUs without binary

translation
– Not used by Xen on newer processors

24

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest
– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like native

operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs
– Some add fairness aspect

• Oversubscription of CPUs means guests may get CPU cycles
they expect
– Time-of-day clocks may be incorrect
– Some VMMs provide application to run in each guest to fix time-of-

day

25

Memory Management

Memory mapping:
• On a bare metal machine: OS uses page table/TLB to map Virtual page

number (VPN) to Physical page number (PPN) (physical memory is
shared). Each process has its own page table/TLB.
– VPN -> PPN (we have seen this already, we called PPN a frame number)

• VMM: Real physical memory (machine memory) is shared by the OSs.
Need to map “PPN” of each VM to MPN (Shadow page table)

PPN ->MPN

26

Memory Management

• VMM: Real physical memory (machine memory) is
shared by the OSs. Need to map PPN of each VM
to MPN (Shadow page table)

PPN ->MPN

• Where is this done?
– Has to be done by hypervisor type 1. Guest OS knows

nothing about MPN.
– Page Table/TLB updates are trapped to VMM.

It needs to do VPN->PPN ->MPN.
– It can do VPN->MPN directly (VMware ESX)

27

Handling memory oversubscription

Oversubscription solutions:
– Deduplication by VMM determining if same page loaded

more than once, memory mapping the same page into
multiple guests

– Double-paging, the guest page table indicates a page is
in a physical frame but the VMM moves some of those
to disk.

– Install a pseudo-device driver in each guest (it looks like a device
driver to the guest kernel but really just adds kernel-mode code to the guest)

• Balloon memory manager communicates with VMM and is told
to allocate or deallocate memory to decrease or increase
physical memory use of guest, causing guest OS to free or have
more memory available.

28

Live Migration

Running guest can be moved between systems, without interrupting user
access to the guest or its apps

– for resource management,
– maintenance downtime windows, etc

• Migration from source VMM to target VMM

– Needs to migrate all pages gradually, without
interrupting execution (details in next slide)

– Eventually source VMM freezes guest, sends vCPU’s final
state, sends other state details, and tells target to start
running the guest

– Once target acknowledges that guest running, source
terminates guest

29

Live Migration

• Migration from source VMM to target VMM
– Source establishes a connection with the target
– Target creates a new guest
– Source sends all read-only memory pages to target
– Source starts sending all read-write pages
– Source VMM freezes guest, sends final stuff (VCPU’s state etc)
– Once target acknowledge that guest running, source terminates

guest.

Guest Target running

5 – Send Dirty Pages (repeatedly)

4 – Send R/W Pages

3 – Send R/O Pages

1 – Establish0 – Running
Guest Source

V
M

M
 S

ou
rc

e

7 – Terminate
Guest Source

V
M

M
 T

ar
ge

t

2 – Create
Guest Target

6 – Running
Guest Target

30

VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines

• Developer can construct a virtual machine with
– required OS, compiler, libraries, and application code
– Freeze them as a unit … ready to run

• Customers get a complete working package
• Virtual appliances: “shrink-wrapped” virtual machines
• Amazon’s EC2 cloud offers many pre-packaged virtual

appliances examples of Software as a service

• Question: do we really have to include a whole kernel in a
shrink wrapped VM?

31

How to cite references
Purpose of including citation:
• Giving credit to the authors
• Mention the authority behind the claim
Unacceptable examples:
• https://dl.acm.org/citation.cfm?id=224066

– What is it about? Who wrote it? When? Why should I trust it?
• Anderson et al, Serverless network file systems, ACM

– ACM is not a journal or conference. When was this work done?
• T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,

and R. Wang. Serverless network file systems. In
Proceedings of the 15th ACM Symp. on Operating System
Principles, pages 109–126, December 1995

• Examples: IEEE template

https://dl.acm.org/citation.cfm?id=224066
https://dl.acm.org/citation.cfm?id=224066
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/conferences/conference-template-letter.docx

32 32

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

Containers
Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

33

Linux Containers and Docker

• Linux containers (LXC) are “lightweight” VMs
• Comparison between LXC/docker and VM

• Containers provide “OS-level Virtualization” vs “hardware level”.
• Containers can be deployed in seconds.
• Very little overhead during execution, just like Type 1.

Note

34

Container: basis

Linux kernel provides
• “control groups” (cgroups) functionality for a set of processes

–allows allocation and prioritization of resources (CPU, memory, block
I/O, network, etc.) without the need for starting any VM

• “namespace isolation” functionality
–allows complete isolation of an applications' view of the operating

environment including Process trees, networking, user
IDs and mounted file systems.

•Managed by Docker etc.
–Docker: build, share, run and orchestrate containerized apps.
–Kubernetes: orchestration platform for managing, automating, and

scaling containerized applications

35

•Standardized packaging for
software and dependencies

• Isolate apps from each other

•Share the same OS kernel

•Works for all major Linux
distributions

•Containers native to Windows
Server 2016

• Docker: a popular container
management service technology

What is a container?

36

Some Docker vocabulary
• Docker Image

• The basis of a Docker container. Represents a full application
• Docker Container

• The standard unit in which the application service resides and executes
• Docker Engine

• Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

• Registry Service (Docker Hub(Public) or Docker Trusted
Registry(Private))

• Cloud or server based storage and distribution service for images (can
be pulled or pushed)

• Dockerfile is a text document that contains all the commands a user could
call on the command line to assemble an image using docker build
command.36

Correspondence: excecutable:image container:process

37

Some Docker vocabulary
• Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image using docker build
command.

• Ex:

syntax=docker/dockerfile:1
FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

Each instruction creates one layer:
• FROM creates a layer from the ubuntu:18.04 Docker image.
• COPY adds files from your Docker client’s current directory.
• RUN builds your application with make.
• CMD specifies what command to run within the container.

38

Docker Volumes

38

• Volumes mount a directory on the host into the container at a specific location

• Can be used to share (and persist) data between containers
•Directory persists after the container is deleted

• Unless you explicitly delete it

• Can be created in a Dockerfile or via CLI

39

Docker Compose: Multi Container Applications

49

• Build and run one container at a time
• Manually connect containers together
• Must be careful with dependencies and start

up order

• Define multi container app in compose.yml file
• Single command to deploy entire app
• Handles container dependencies
• Works with Docker Swarm, Networking,

Volumes, Universal Control Plane

40

version: '2' # specify docker-compose version

Define the services/containers to be run
services:
angular: # name of the first service
build: client # specify the directory of the Dockerfile
ports:
- "4200:4200" # specify port forewarding

express: #name of the second service
build: api # specify the directory of the Dockerfile
ports:
- "3977:3977" #specify ports forewarding

database: # name of the third service
image: mongo # specify image to build container from
ports:
- "27017:27017" # specify port forewarding

Docker Compose: Multi Container Applications

41

Unique features

• Containers run in the user space
• Each container has it own: process space, network interface,

booting mechanism with configuration
• Share kernel with the host
• Can be packaged as Docker images to provide microservices.

42

Monolithic architecture vs microservices

43

Microservices Accessing the Shared Database

43

44

Microservices Characteristics

• Many smaller (fine grained), clearly
scoped services
– Single Responsibility Principle
– Independently Managed

• Clear ownership for each service
– Typically need/adopt the “DevOps” model

• 100s of MicroServices
– Need a Service Metadata Registry

(Discovery Service)
• May be replicated as needed
• A microservice can be updated without

interruption

45

Microservices. Scalability

46 46

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

Data Centers &
Cloud Computing
Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

47

Data Centers

• Large server and storage farms
– 1000s-100,000 of servers

– Many PBs of data

• Used by
– Enterprises for server applications

– Internet companies
– Some of the biggest DCs are owned by Google, Facebook, etc

• Used for
– Data processing

– Web sites
– Business apps

48

Data Center architecture

Traditional - static
– Applications run on physical servers

– System administrators monitor and manually manage
servers

– Storage Array Networks (SAN) or Network Attached
Storage (NAS) to hold data

Modern – dynamic with larger scale
– Run applications inside virtual machines
– Flexible mapping from virtual to physical resources
– Increased automation, larger scale

49

Data Center architecture

Giant warehouses with:
– Racks of servers

– Storage arrays
– Cooling infrastructure
– Power converters
– Backup generators

Or with containers
– Each container filled with thousands of servers
– Can easily add new containers
– “Plug and play”
– Pre-assembled, cheaper, easily expanded

50

Server Virtualization

Allows a server to be “sliced” into Virtual
Machines

– VM has own OS/applications
– Rapidly adjust resource allocations
– VM migration within a LAN

• Virtual Servers
– Consolidate servers
– Faster deployment
– Easier maintenance

• Virtual Desktops
– Host employee desktops in VMs
– Remote access with thin clients
– Desktop is available anywhere
– • Easier to manage and maintain

51

Data Center Challenges

Resource management
– How to efficiently use server and storage resources?

– Many apps have variable, unpredictable workloads
– Want high performance and low cost

– Automated resource management
– Performance profiling and prediction

Energy Efficiency
– Servers consume huge amounts of energy

– Want to be “green”
– Want to save money

52

Data Center Challenges

Power Efficiency measured as Power Usage Effectiveness
• Power Usage Effectiveness = Ratio of IT Power / Total Power
• typical: 1.7, Google PUE ~ 1.1)

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx

53

Economy of Scale

Larger data centers can be cheaper to buy and
run than smaller ones
– Lower prices for buying equipment in bulk
– Cheaper energy rates

– Automation allows small number of sys admins to
manage thousands of servers

– General trend is towards larger mega data centers

– 100,000s of servers
– Has helped grow the popularity of cloud computing

54

Economy of Scale

Resource
Cost in

Medium DC
Cost in

Very Large DC Ratio

CPU cycle cost 2 picocents < 0.5 picocents

Network $95 / Mbps / month $13 / Mbps / month 7.1x

Storage $2.20 / GB / month $0.40 / GB / month 5.7x

Administration ≈140 servers/admin >1000 servers/admin 7.1x

Pico = 10-3 nano = 10-12

