
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L21
File-system Interface

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
• TLB vs Cache? Caches contains instructions and data, TLB contains only page-to-frame

mapping

• Can the page table be accessed by the user
programs? Kernel space

• Working set can mean

– Pages accessed in a specified time window tools available

– Pages currently allocated to a process
• Reference bit: set to one if frame accessed.

Minimal info needed for LRU

• What page replacement algorithms are
currently in use variations of LRU/Clock

• Second chance/Clock: combination of LRU approx. and sequential
search

https://www.researchgate.net/publication/316511142_A_Survey_Of_Page_Replacement_Algorithms_In_Linux

3

Please be considerate
• Allow other students to concentrate
• No talking, humming, etc ..

4

Other Issues – I/O interlock

• I/O Interlock – Pages must
sometimes be locked into
memory

• Consider I/O - Pages that
are used for copying a file
from a device must be
locked from being selected
for eviction by a page
replacement algorithm

• Pinning of pages to lock
into memory

5

Example: MS Windows
• Uses demand paging with clustering. Clustering brings

in pages surrounding the faulting page
• Processes are assigned working set minimum and

working set maximum
• Working set minimum is the minimum number of

pages the process is guaranteed to have in memory
• A process may be assigned as pages up to its working

set maximum
• When the amount of free memory in the system falls

below a threshold, automatic working set trimming is
performed to restore the amount of free memory

• Working set trimming removes pages from processes
that have pages in excess of their working set
minimum

6 6

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

File-system
Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

7

File-Systems

Ch 13: File system interface
• File Concept, types
• Attributes, Access Methods, operations, Protection
• Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation
Ch 15: File system internals
• Storage abstraction: File system metadata (size, free lists), File

metadata(attributes, disk block maps), data blocks
• Allocation of blocks to files: contiguous, sequential, linked list

allocation, indexed
• In memory info: Mount table, directory structure cache, open file

table, buffers
• Unix: inode numbers for directories and files
Ch 11: Mass storage

8

File Systems

9

File types

Type used by programs not OS

10

File Attributes
• Name – only information kept in human-readable

form
• Identifier – unique tag (number) identifies file

within file system
• Type – needed for systems that support different

types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing,

executing
• Time, date, and user identification – data for

protection, security, and usage monitoring
• Information about files are kept in the directory

structure, which is maintained on the disk
• Many variations, including extended file attributes

such as file checksum

11

Disk Structure
• Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against

failure
• Partition can be formatted with a file system
• Entity containing file system known as a volume
• Each volume containing file system also tracks that

file system’s info in device directory or volume
table of contents

• As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

12

Directory Structure

• A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

13

Operations Performed on Directory

• Traverse the file system
• List a directory
• Search for a file
• Create/Delete/Rename a file

14

Directory Organization

• Efficiency – locating a file quickly
• Naming – convenient to users
– Two users can have same name for different

files
– The same file can have several different

names

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

The directory is organized logically to obtain

15

Directory Organization

• Single level directory
• Two-level directory
• Tree-structured directories:
– efficient grouping, searching,
– absolute or relative path names

• Acyclic graph directories
– Shared sub-directory, files

16

File System Mounting

• A file system must be mounted before it can be
accessed

• A unmounted file system is mounted at a mount point
• Merges the file system

root

17

File Sharing

• Sharing of files on multi-user systems is desirable
• Sharing may be done through a protection scheme
• On distributed systems, files may be shared across a

network
• Network File System (NFS) is a common distributed

file-sharing method
• If multi-user system

– User IDs identify users, allowing permissions and
protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

– Owner of a file / directory
– Group of a file / directory

18

Protection: Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users on Unix / Linux

RWX
a) owner access 7 Þ 1 1 1

RWX
b) group access 6 Þ 1 1 0

RWX
c) public access 1 Þ 0 0 1

• Ask manager to create a group (unique name), say
G, and add some users to the group.

• For a particular file (say game) or subdirectory,
define an appropriate access.

Attach a group to a file
chgrp G game

19

Windows 7 Access-Control List Management

20

A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name

21 21

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

File-system
Implementation

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

22

Chap 14/15: File System Implementation/internals

• File-System Structure
• File-System Implementation
• Directory Implementation
• Allocation Methods
• Free-Space Management
• Efficiency and Performance
• Recovery

23

File-System Structure
• File structure

– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks/SSD)
– Provides user interface to storage, mapping logical to physical
– Provides efficient and convenient access to disk by allowing data

to be stored, located retrieved easily
– Can be on other media (flash etc), with different file system

• Disk provides in-place rewrite and random access
– I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure -information about
a file (“inode” in Linux) inc location of data

• Device driver controls the physical device

24

Layered File System

Device drivers

Logical blocks to
physical blocks

Files, metadata

File
system

Linear array of
blocks

26

Layered File System

Search dir, find file location,
determine which file blocks

will be used

Map file blocks (logical
blocks) to disk blocks
(physical blocks), disk

allocation

Commands to device driver,
Buffering of disk data,
caching of disk blocks

Logical File
System Layer

File
Organization
Layer

“Basic File
System” Layer

Processes

Disk Driver

Disk Controller

27

File System Layers (from bottom)
• Device drivers manage I/O devices at the I/O control layer

– Given commands like “read drive1, cylinder 72, track 2, sector 10, into
memory location 1060” outputs low-level hardware specific commands to
hardware controller

• “Basic file system” given command like “retrieve block 123” translates to
device driver
– Also manages memory buffers and caches (allocation, freeing, replacement)

• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical
blocks
- Translates logical block # to physical block #
- Manages free space, disk allocation

• Logical file system manages metadata information
– Translates file name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)
– Directory management
– Protection

28

File Systems
• Many file systems, sometimes several within an

operating system
– Each with its own format

• Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT
(USB/SD cards 2006), ReFS (2012)

• Linux has more than 40 types, with extended file system
(1992) ext2 (1993), ext3 (2001), ext4 (2008);

• distributed file systems, GoogleFS (2003), HDFS (2006)
• floppy, CD, DVD Blu-ray ..

– New ones still arriving..

29

Data and Metadata

Storage abstraction:
• File system metadata (size, free lists),
– File metadata (attributes, disk block maps),

• Data blocks

30

Process, System, Files

• File descriptor table for a process: File descriptor, pointer
• System wide open File Table: r/w status, offset, inode

number
• Inode table for all files/dirs: indexed by inode numbers

(unix: ls –ia)
– Inode for a file: file/dir metadata, pointers to blocks

31

OS File Data Structures
• Per-process file descriptor table - for each file,

– pointer to entry in the open file table
– current position in file (offset)
– mode in which the process will access the file (r, w, rw)
– pointers to file buffer

• Open file table - shared by all processes with an open
file.
– open count
– Inode number

• Inode table – an inode contains
• file attributes, including ownership, protection information, access

times, ...
• pointers to location(s) of file in memory

FD: int

32

Common File Systems

File System Max File Size Max Partition Size Journaling Notes

Fat32 4 GiB 8 TiB No Commonly supported

ExFAT 128 PiB 128 PiB No Optimized for flash

NTFS 2 TiB 256 TiB Yes For Windows Compatibility

ext2 2 TiB 32 TiB No Legacy

ext3 2 TiB 32 TiB Yes Standard linux filesystem for many years.

ext4 16 TiB 1 EiB Yes Modern iteration of ext3.

Journaling: keeps track of changes
not yet committed: allows recovery

33

File-System Implementation: Outline

• In memory/On disk structures
• Partitions, mounting
• Disk Block allocation approaches

34

File-System Implementation
• Based on several on-disk and in-memory

structures.
• On-disk

– Boot control block (per volume) boot block in unix

– Volume control block (per volume) master file table in UNIX

– Directory structure (per file system) file names and pointers to
corresponding FCBs

– File control block (per file) inode in unix

• In-memory
– Mount table about mounted volumes
– The open-file tables (system-wide and per process)
– Directory structure cache
– Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition

35

In-Memory File System Structures

Opening a file
fopen() returns fid

Reading a file
Inode refers to an individual
file

36

On-disk File-System Structures
1. Boot control block contains info needed by

system to boot OS from that volume
– Needed if volume contains OS, usually first block

of volume
2. Volume control block (superblock ext or

master file tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free

block pointers or array
3. Directory structure organizes the files
– File Names and inode numbers UFS, master file

table NTFS

Volume: logical disk drive, perhaps a partition

Super
block

Directory,
FCBs File data blocksBoot

block

37

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file
– Indexed using inode number; permissions, size,

dates UFS (unix file system)

– master file table using relational DB structures
NTFS

38

Create a file

• Allocates a new FCB.
• Update directory
– Reads the appropriate directory into memory, in

unix a directory is a file with special type field

– updates it with the new file name and FCB,
– writes it back to the disk.

39

Partitions and Mounting
• Partition can be a volume containing a file system

(cooked) or raw – just a sequence of blocks with no
file system perhaps for swap space

• Boot block can point to boot volume or boot
loader set of blocks that contain enough code to
know how to load the kernel from the file system

• Root partition contains the OS, Mounted at boot
time
– other partitions can hold other OSes, other file systems,

or be raw
– Other partitions can mount automatically or manually

• At mount time, file system consistency checked

40

Virtual File Systems

• Virtual File Systems (VFS) in Unix kernel is an
abstraction layer on top of specific file systems.

• VFS allows the same system call interface (the API) to
be used for different types of file systems

• The API (POSIX system calls) is to the VFS interface,
rather than any specific type of file system

Virtual to specific FS interface

41

NFS (Network File System)

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC
RPC) system (1984).

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749

42

File Sharing – Remote File Systems
• Uses networking to allow file system access between

systems
– Manually via programs like FTP/SFTP
– Automatically, seamlessly using distributed file systems
– Semi automatically via the world wide web

• Client-server model allows clients to mount remote
file systems from servers
– Server can serve multiple clients
– Client and user-on-client identification is insecure or

complicated
– NFS is standard UNIX client-server file sharing protocol
– CIFS is standard Windows protocol
– Standard operating system file calls are translated into

remote calls

