
1 1

Colorado State University
Yashwant K Malaiya

Fall 21 Lecture 4
OS Structures/Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
• A chip can have one or more processors (CPU, core) and possibly more

components.

• Kernel vs OS: Kernel: process/memory/file/IO management, OS can
include UI, libraries etc.

• Why User vs kernel mode? Because users can’t be trusted.
• Where are registers, Cache and main memory , physically?
• Scheduling, Memory management, storage management? Good that

you are thinking about these.

Note: TA office hours are available. Help session Slides: Schedule, Video: Teams

Intel Core i7

https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwih6d7irbjkAhVbHzQIHdyTDrAQMwi1ASgAMAA&url=https://www.legitreviews.com/intel-core-i7-4770k-haswell-3-5ghz-quad-core-cpu-review_2203&psig=AOvVaw1pMN_Yf0tgEwhtfFX9nnXm&ust=1567727390451957&ictx=3&uact=3

3

Memory & Storage Management

4

K-scale: Amount of information/storage

Amount of info:
• A kilobyte, or KB, is 1,024 (or 210) bytes
• a megabyte, or MB, is 1,0242 (or 220) bytes
• a gigabyte, or GB, is 1,0243 bytes
• a terabyte, or TB, is 1,0244 bytes
• a petabyte, or PB, is 1,0245 bytes
Measures of time
• Milliseconds, microseconds, nanoseconds,

picoseconds 10-3, 10-6, 10-9, 10-12

Byte (B) = 8 bits (b)
Kibibyte?

5

Memory Management

• To execute a program all (or part) of the instructions must
be in memory

• All (or part) of the data that is needed by the program
must be in memory.

• Memory management determines what is in memory and
when
– Optimizing CPU utilization and computer response to users

• Memory management activities
– Keeping track of which parts of memory are currently being

used and by whom
– Deciding which processes (or parts thereof) and data to

move into and out of memory
– Allocating and deallocating memory space as needed

Means main
memory here

CPU
scheduling

6

Storage Management
• OS provides uniform, logical view of information

storage
– Abstracts physical properties to logical storage unit - file
– Each medium is controlled by device (i.e., disk drive, tape

drive)
• Varying properties include access speed, capacity, data-

transfer rate, access method (sequential or random)

• File-System management
– Files usually organized into directories
– Access control on most systems to determine who can

access what
– OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and directories
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

7

Mass-Storage Management
• Usually, disks used to store data that does not fit in

main memory or data that must be kept for a “long”
period of time

• Entire speed of computer operation hinges on disk
subsystem and its algorithms

• OS activities
– Free-space management
– Storage allocation
– Disk scheduling

• Some storage need not be fast
– Tertiary storage includes optical storage, magnetic tape
– Still must be managed – by OS or applications
– Varies between WORM (write-once, read-many-times)

and RW (read-write)

8

Migration of data “A” from Disk to Register

• Multitasking environments must be careful to use most
recent value, no matter where it is stored in the storage
hierarchy

• Multiprocessor environment must provide cache coherency
in hardware such that all CPUs have the most recent value in
their cache

• Distributed environment situation even more complex
– Several copies of a datum can exist
– Various solutions covered in Chapter 19 (will not get to it)

9 9

Colorado State University
Yashwant K Malaiya

OS Structures

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

10 10

Chap2: Operating-System Structures
Objectives:
• Services OS provides to users, processes, and other

systems
• Structuring an operating system
• How operating systems are designed and

customized and how they boot

11

OS Services for the User 1/3
• Operating systems provide an environment for execution of

programs and services to programs and users
– User interface - Almost all operating systems have a user

interface (UI).
• Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
– Program execution - The system must be able to load a

program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

– I/O operations - A running program may require I/O, which
may involve a file or an I/O device

12

OS services for the User 2/3 (Cont.)

– File-system operations - read and write files and directories,
create and delete them, search them, list file Information,
permission management.

– Communications – Processes may exchange information, on the
same computer or between computers over a network
• via shared memory or through message passing (packets

moved by the OS)
– Error detection – OS needs to be constantly aware of possible

errors
• May occur in the CPU and memory hardware, in I/O devices, in

user program
• For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

13

OS services for system 3/3 (Cont.)
• OS functions for ensuring the efficient resource sharing

– Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of
them
• Many types of resources - CPU cycles, main memory, file

storage, I/O devices.
– Accounting - To keep track of which users use how much and

what kinds of computer resources
– Protection and security - concurrent processes should not

interfere with each other
• Protection involves ensuring that all access to system

resources is controlled
• Security of the system from outsiders requires user

authentication, extends to defending external I/O devices
from invalid access attempts

14

A View of Operating System Services

15

User Operating System Interface - CLI

CLI or command interpreter allows direct command
entry
– Sometimes implemented in kernel, sometimes by systems

program
– Sometimes multiple flavors implemented – shells
– Primarily fetches a command from user and executes it
– Sometimes commands built-in, sometimes just names of

programs
• If the latter, adding new features doesn’t require shell modification

Ex:
Windows: command prompt
Linux: bash

16

Shell Command Interpreter

A bash session

17

Common bash commands 1/2

pwd print Working directory

ls -l Files in the working dir –long format

cd dirpath Change to dirpath dir

. .. ~username / This dir , upper, usename’s home, root

cp f1 d1 Copy f1 to dir d1

mv f1 d1 Move f1 to d1

rm f1 f2 Remove f1, f2

mkdir d1 Create directory d1

which x1 Path for executable file x1

man cm help cm Manual entry or help with command cm

ls > f.txt Redirect command std output to f.txt, >> to append

sort < list.txt Std input from file

ls –l | less Pipe first command into second

18

Common bash commands 2/2

echo $((expression)) Evaluate expression

echo $PATH Show PATH

echo $SHELL Show default shell

chmod 755 dir Change dir permissions to 755

jobs ps List jobs for current shell, processes in the system

kill id Kill job or process with given id

cmd & Start job in background

fg id Bring job id to foreground

ctrl-z followed by bg or fg Suspend job and put it in background

w who Who is logged on

ping ipadd Get a ping from ipadd

ssh user@host Connect to host as user

grep pattern files Search for pattern in files

Ctrl-c Halt current command

19

User Operating System Interface - GUI

• User-friendly desktop metaphor interface
– Usually mouse, keyboard, and monitor
– Icons represent files, programs, actions, etc
– Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute
function, open directory (known as a folder)

– Invented at Xerox PARC in 1973
• Most systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell
– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available
– Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

20

Touchscreen Interfaces

• Touchscreen devices
require new interfaces
• Mouse not possible or not desired
• Actions and selection based on

gestures
• Virtual keyboard for text entry

• Voice commands.

21

The Mac OS X GUI

22

System Calls
• Programming interface to the services provided by the OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level Application

Programming Interface (API) rather than direct system call
use

• Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for
the Java virtual machine (JVM)

Note that the system-call names used throughout our
text are generic.

23

Example of System Calls
• System call sequence to copy the contents of one file

to another file

24

Example of Standard API

unistd.h header file provides
access to the POSIX API

25

System Call Implementation

• The caller need know nothing about how the
system call is implemented
– Just needs to obey API and understand what OS will do

as a result call
– Most details of OS interface hidden from programmer

by API
• Managed by run-time support library (set of functions built

into libraries included with compiler)
• System call implementation examples:

– LC-3 Trap x21 (OUT) code in Patt & Patel (see slide 22)

– Identified by a number that leads to address of the
routine

– Arguments provided in designated registers
– Linux x86_64 table, code snippets

In LC3
Traps are
system

calls

https://www.cs.colostate.edu/~cs270/.Fall17/slides/LectureMT2Review.pdf
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

26

API – System Call – OS Relationship

Trap
vector

table in
LC3

27

Examples of Windows and Unix System Calls

28

Standard C Library Example

• C program invoking printf() library call, which
calls write() system call

29

Example OS: MS-DOS ’81..

• Single-tasking
• Shell invoked when

system booted
• Simple method to run

program
– No process created

• Single memory space
• Loads program into

memory, overwriting
all but the kernel

• Program exit -> shell
reloaded At system startup running a program

30

Example: xBSD ‘93 Berkely

• Unix ‘73 variant, inherited by
several later OSs

• Multitasking
• User login -> invoke user’s choice

of shell
• Shell executes fork() system call to

create process
– Executes exec() to load program into

process
– Shell waits for process to terminate

or continues with user commands
• Process exits with:

– code = 0 – no error
– code > 0 – error code

31 31

32

POSIX

• POSIX: Portable Operating Systems Interface
for UNIX Pronounced pahz-icks

• POSIX.1 published in 1988
• Final POSIX standard: Joint document
– Approved by IEEE & Open Group End of 2001
– ISO/IEC approved it in November 2002
– Most recent IEEE Std 1003.1-2008, 2016 Edition

• Most OSs are mostly POSIX-compliant

33 33

Colorado State University
Yashwant K Malaiya

Back from ICQ

CS370 Operating Systems

34

System Programs 1/4

• System programs provide a convenient environment
for program development and execution. They can be
divided into:
– File manipulation
– Status information sometimes stored in a File modification
– Programming language support
– Program loading and execution
– Communications
– Background services
– Application programs

• Most users’ view of the operation system is defined
by system programs, not the actual system calls

35

System Programs 2/4
• Provide a convenient environment for program

development and execution
– Some of them are simply user interfaces to system calls;

others are considerably more complex

• File management - Create, delete, copy, rename,
print, dump, list, and generally manipulate files
and directories

• Status information
– Some ask the system for info - date, time, amount of

available memory, disk space, number of users
– Others provide detailed performance, logging, and

debugging information
– Typically, these programs format and print the output to

the terminal or other output devices
– Some systems implement a registry - used to store and

retrieve configuration information

36

System Programs 3/4
• File modification

– Text editors to create and modify files
– Special commands to search contents of files or perform

transformations of the text
• Programming-language support - Compilers,

assemblers, debuggers and interpreters sometimes
provided

• Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

• Communications - Provide the mechanism for
creating virtual connections among processes, users,
and computer systems
– Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

37

System Programs 4/4
• Background Services
– Launch at boot time

• Some for system startup, then terminate
• Some from system boot to shutdown

– Provide facilities like disk checking, process
scheduling, error logging, printing

– Run in user context not kernel context
– Known as services, subsystems, daemons

• Application programs
– Don’t pertain to system
– Run by users
– Not typically considered part of OS
– Launched by command line, mouse click, finger poke

38

Operating System Design

• General-purpose OS is very large program
• Various ways to structure ones
– Simple structure – MS-DOS. not modular
– More complex – UNIX.

• Kernel+systems programs

– Layered – an abstracation
– Microkernel –Mach: kernel is minimal
– hybrid

Tanenbaum–Torvalds debate:
(January 29, 1992).
"LINUX is obsolete".

http://www.oreilly.com/openbook/opensources/book/appa.html

39 39

CS370 OS Ch3 Processes
• Process Concept: a program in execution
• Process Scheduling
• Processes creation and termination
• Interprocess Communication using shared

memory and message passing

40

Process Concept
• An operating system executes a variety of programs:

– Batch system – jobs
– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost
interchangeably

• Process – a program in execution; process execution
must progress in sequential fashion. Includes
– The program code, also called “text section”
– Current activity including program counter, processor

registers
– Stack containing temporary data

• Function parameters, return addresses, local variables
– Data section containing global variables
– Heap containing memory dynamically allocated during run

time

41

Process Concept (Cont.)

• Program is passive entity stored on disk
(executable file), process is active
– Program becomes process when executable file

loaded into memory

• Execution of program started via GUI mouse
clicks, command line entry of its name, etc

• One program can be several processes
– Consider multiple users executing the same

program

42

Process in Memory

