CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 21 Lecture 4

OS Structures/Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

FAQ

Bash commands: see Self Exercise 1

API vs SyStem call user programs in a high level language use APIs, APIs are
wrappers for system calls that call system routines. Example Linux x-86 system call code.

Why do we need API (application programing

interfa CE) ? So that we don’t have to write the code in assembly. Example

Who came up with APl standard POSIX? committees of experts.

Colorado State University

https://www.cs.utexas.edu/~bismith/test/syscalls/syscalls.html
https://linux.die.net/man/3/read

CS370 OS Ch3 Processes

* Process Concept: a program in execution
* Process Scheduling
* Processes creation and termination

* Interprocess Communication using shared
memory and message passing

ColoradaState University

Process Concept

* An operating system executes a variety of programs:
— Batch system — jobs
— Time-shared systems — user programs or tasks

* Textbook uses the terms job and process almost
interchangeably

* Process —a program in execution; process execution
must progress in sequential fashion. Includes

— The program code, also called “text section”

— Current activity including program counter, processor
registers

— Stack containing temporary data
* Function parameters, return addresses, local variables
— Data section containing global variables

— Heap containing memory dynamically allocated during run
time

. Colorado State University

Process Concept (Cont.)

Program is passive entity stored on disk
(executable file), process is active

— Program becomes process when executable file
loaded into memory

Execution of program started via GUI mouse
clicks, command line entry of its name, etc

One program can be several processes

— Consider multiple users executing the same
program

Colorado State University

Process in Memory

max

stack

heap

data

text

Colorado State University

Process State

* As a process executes, it changes state
— new: The process is being created
— running: Instructions are being executed

— waiting: The process is waiting for some event to
occur

— ready: The process is waiting to be assigned to a
processor

— terminated: The process has finished execution

Colorado State University

Meanwhile, on an ordinary Linux kernel...

What's going on with
these zombie

processes? Their parent is too busy

to get any notifications...

Daniel Stori {turnoff.us}

Colorado State University

Diagram of Process State

admitted interrupt

In the Ready
Queue

I/O or event completion I/O or event wait

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

Colorado State University

10

Process Control Block (PCB)

Information associated with each process
(also called task control block)

Process state — running, waiting, etc

Program counter — location of
instruction to next execute

CPU registers — contents of all process-
centric registers

CPU scheduling information- priorities,
scheduling queue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start, time
limits

|/O status information — 1/O devices
allocated to process, list of open files

process state

process number

program counter

reqgisters

memory limits

list of open files

Colorado State University

CPU Switch From Process to Process

process P,

executing ‘1 /
A 4

executing |
\'4

~

- idle

==

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB, 1
interrupt or system call

[—v

save state into PCB,

reload state from PCB,

>idle

executing

~

>idle

11

Colorado State University

Demonstration: Processes

* Mac: apps> utilities> activity monitor > CPU etc.

* https://support.apple.com/guide/activity-monitor/welcome/mac
— See information about processes
— Name, PID, threads, details ..

e Windows 10 Ctrl+Alt+Del

* https://www.howtogeek.com/405806/windows-task-manager-the-complete-
guide/ : Task manager

Colorado State University

12

https://support.apple.com/guide/activity-monitor/welcome/mac
https://www.howtogeek.com/405806/windows-task-manager-the-complete-guide/

13

So far, process has a single thread of execution

Consider having multiple program counters per
process

— Multiple locations can execute at once
* Multiple threads of control -> threads

Must then have storage for thread details,
multiple program counters in PCB

Coming up in next chapter

Colorado State University

PCB Representation in Linux

Represented by the C structure task struct.

Fields may include
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

i

struct task_struct
process information

NN

struct task_struct
process information

"/

f

current

struct task_struct
process information

S RS

(currently executing proccess)

Colorado State University

Colorado State University

15

Process Scheduling

 Maximize CPU use, quickly switch processes
onto CPU for time sharing

* Process scheduler selects among available
processes for next execution on CPU

* Maintains scheduling queues of processes
— Job queue —set of all processes in the system

— Ready queue — set of all processes residing in main
memory, ready and waiting to execute

— Device queues — set of processes waiting for an 1/0O
device

— Processes migrate among the various queues

Colorado State University

16

Ready Queue And Various |I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

17

queue header PCB, PCB,
head = > —_
tail registers registers
head T——=
tail ——=
head T——=
@il — PCB, PCB,4 PCBg
/ T —_— — —
head 1
L .\
PCB;
head » S
@l 4+
Colorado State University

Representation of Process Scheduling

B Queueing diagram represents queues, resources, flows

_____, ready queue CPU g

/O /O queue = l/O request [«
time slice E

expired

child fork a
@‘7 child "
interrupt wait for an
occurs interrupt

Assumes a single CPU. Common until recently

Colorado State University

18

19

Schedulers

Short-term scheduler (or CPU scheduler) — selects which process should be
executed next and allocates CPU

— Sometimes the only scheduler in a system

— Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

Long-term scheduler (or job scheduler) — selects which processes should be
brought into the ready queue

— Long-term scheduler is invoked infrequently (seconds, minutes) = (may
be slow)

— The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

— 1/0-bound process — spends more time doing 1/0 than computations,
many short CPU bursts

— CPU-bound process — spends more time doing computations; few very
long CPU bursts

Long-term scheduler strives for good process mix

Colorado State University

20

Multitasking in Mobile Systems

Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

Due to screen real estate, user interface limits iOS provides for
d
— Single foreground process- controlled via user interface

— Multiple background processes—in memory, running, but not on the display,
and with limits

* Limits include single, short task, receiving notification of events, specific long-
running tasks like audio playback

Newer iOS supports multitasking better. i0s 14: picture in picture

Android runs foreground and background, with fewer limits

— Background process uses a service to perform tasks
— Service can keep running even if background process is suspended
— Service has no user interface, small memory use.

Colorado State University

21

1 :r\ e
ENTERPRISE

Colorado State University

Context Switch

22

When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system
does no useful work while switching

— The more complex the OS and the PCB =2 the longer
the context switch

Time dependent on hardware support

— Some hardware provides multiple sets of registers
per CPU = multiple contexts loaded at once

Colorado State University

Processes creation & termination

Colorado State University

23

Processes creation & termination

Colorado State University

24

Process Creation

* Parent process create children processes,
which, in turn create other processes,
forming a tree of processes

e Generally, process identified and managed
via a process identifier (pid)
e Resource sharing options
— Parent and children share all resources
— Children share subset of parent’ s resources
— Parent and child share no resources*
* Execution options
— Parent and children execute concurrently
— Parent waits until children terminate

Colorado State University

25

A Tree of Processes in Linux

e kthreadd sEhd
bash khelper pdflush . sshd
pid = 8416 pid = 6 pid = 200 pid = 3610

ps emacs _ ;C_Sil’t)os
pid = 9298 pid = 9204 pid =

Colorado State University

26

Process Creation (Cont.)

 Address space
— Child duplicate of parent
— Child has a program loaded into it

 UNIX examples
— fork () system call creates new process

— exec () system call used after a fork () to replace the
process’ memory space with a new program

parent Wit resumes
£, -

child ' exec() =/e;it()

Colorado State University

27

Fork () to create a child process

* Fork creates a copy of process

e Return value from fork (): integer
— When > 0:

* Running in (original) Parent process
* return value is pid of new child

— When =0:
* Running in new Child process

— When < 0:

* Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

* Running in original process

* All of the state of original process duplicated in
both Parent and Child! ans.

— Memory, File Descriptors (next topic), etc...

lorado State University

28

Process Management System Calls

* UNIX fork — system call to create a copy of the current process,
and start it running

— No arguments!

* UNIX exec — system call to change the program being run by the
current process. Several variations.

* UNIX wait — system call to wait for a process to finish
* Details: see man pages

Some examples:

pid_t pid = getpid(); /* get current processes PID */;
waitpid(cid, 0, 0); /* Wait for my child to terminate. */
exit (0); /* Quit*/

kill(cid, SIGKILL); /* Kill child*/

Colorado State University

29

http://man7.org/linux/man-pages/man3/execl.3.html

UNIX Process Management

30

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

fork

P
N

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

child

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

parent

exec main (){

NV

wait

NV

Colorado State University

C Program Forking Separate Process

#include <sys/types.h> <sys/types.h> definitions of derived types
#include <stdio.h> <unistd.h> POSIX API

#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
}
else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;
}
else { /* parent process */
/* parent will wait for the child to complete */

wait (NULL) ;

printf("Child Complete"); execlp(3) - Linux man page
} http://linux.die.net/man/3/execlp
return 0;

) rado State University

http://linux.die.net/man/3/execlp

C Program Forking Separate Process

#include <sys/types.h> <sys/types.h> definitions of derived types
#include <stdio.h> <unistd.h> POSIX API

#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
}
else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;
}
else { /* parent process */
/* parent will wait for the child to complete */

wait (NULL) ;

printf("Child Complete"); execlp(3) - Linux man page
} http://linux.die.net/man/3/execlp
return 0;

) rado State University

http://linux.die.net/man/3/execlp

Forking PIDs

#include <sys/types.h> p— - .
#include <stdio.h> Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m

#include <unistd.h>

int main(){

return O;

| am the parent with PID 494, my parent is 485, my child is 496
I am the child 0, my PID is 496

DateClient.java newproc-posix_m
pid_t cid;

Child Complete
/* fork a child process */ Ys-MacBook-Air:ch3 ymalaiya$
cid = fork();

if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");
return 1;
}
else if (cid == 0) { /* child process */
printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is",NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */

printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

See self-exercise in Teams https://www.tutorialspoint.com/compile_c_online.php

Colorado State University

https://www.tutorialspoint.com/compile_c_online.php

* Wait/waitpid () allows caller to suspend execution
until child’s status is available

* Process status availability
— Generally after termination
— Or if process is stopped

e pid_t waitpid(pid _t pid, int *status, int options);
* The value of pid can be:

— 0 wait for any child process with same process group ID
(perhaps inherited)

— >0 wait for child whose process group ID is equal to the
value of pid

— -1 wait for any child process (equi to wait ())
e Status: where status info needs to be saved

Colorado State University

34

35

Linux: fork ()

e Search for man fork()
« http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process
SYNOPSIS #include <unistd.h>
pid_t fork(void);
DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. ...
The child process and the parent process run in separate memory spaces...

The child process is an exact duplicate of the parent process except for the
following points:

RETURN VALUE On success, the PID of the child process is returned in the
parent, and O is returned in the child. On failure, -1 is returned in the

parent, no child process is created, and errno is set appropriately.
EXAMPLE See pipe(2) and wait(2).

errno is a global variable in errno.h

Colorado State University

http://man7.org/linux/man-pages/man2/fork.2.html

Process Group ID

36

Process group is a collection of related
processes

Each process has a process group ID

Process group leader?

— Process with pid==pgid

A process group has an associated controlling
terminal, usually the user’s keyboard

— Control-C: sends interrupt signal (SIGINT) to all
processes in the process group

— Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting

With the terminal
Colorado State University

Process Groups

37

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:
* Parent (and further ancestors)

* Siblings

e Children (and further descendants)

A process can only send signals to members of its
process group

e Signals are a limited form of inter-process
communication used in Unix.

e Signals can be sent using system call
— int kill(pid_t pid, int sig);

Colorado State University

http://man7.org/linux/man-pages/man2/kill.2.html

Process Termination

 Process executes last statement and then asks
the operating system to delete it using the

exit () system call.
— Returns status data from child to parent (via wait ())

— Process’ resources are deallocated by operating
system
* Parent may terminate the execution of children
processes usingthekill() system call.
Some reasons for doing so:
— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

Colorado State University

38

Process Termination

39

Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

— cascading termination. All children, grandchildren, etc. are
terminated.

— The termination is initiated by the operating system.
The parent process may wait for termination of a child
process by using the wait () system call. The call returns
status information and the pid of the terminated process
pid = wait(&status) ;
If no parent waiting (did not invoke wait ()) processis a
zombie

If parent terminated without invoking wait, process is an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

Colorado State University

