CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2021 Lecture 6

Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

FAQ

Programs with multiple processes is a new paradigm for youl!

* When does the child process begin execution? o).

 What does fork() return?
— It returns the value 0 in the child process. chiis piois not zero
— In the parent fork() returns the PID of the child.

¢ HOW are PIDS aSSigned? By the kernel. Used to uniquely identify processes.
 What do they return?: getpid(), getppid()

* The parent and the child processes run concurrently. Which

finishes first?

— We don’t know. OS will switch them in and out of the processor

according to its will.
Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The
child process is a separate process.
Fork is the only way to create a process (after init).

Colorado State University

FAQ

Questions on wait() example: rv = wait(&wstatus);
— Caller will block until the child exits or finishes.
— on success, returns PID of the terminated child; onerror, -1 is returned.

— Status in wstatus variable, extracted using WEXITSTATUS (wstatus)

If the child has exited and the parent hasn’t yet executed
wait().
— The child is in terminated (zombie) sate.

Self exercise 2: Examine, compile and and run programs.

Colorado State University

http://man7.org/linux/man-pages/man2/wait.2.html

Forking PIDs

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h> — Yy
int main(){ :

pid_t cid; @
/* fork a child process */ ~—~
cid = fork();

if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n"); .
return 1; Parent and the child processes

} run concurrently.
else if (cid == 0) { /* child process */

printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is",NULL);

resumes

}

else { /* parent process */
/* parent will wait for the child to complete */
printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

return O;

} Colorado State University

Process Group ID

* Process group is a collection of related
processes

* Each process has a process group ID

* Process group leader?
— Process with pid==pgid

* A process group has an associated controlling
terminal, usually the user’s keyboard

— Control-C: sends interrupt signal (SIGINT) to all
processes in the process group

— Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting

With the terminal
Colorado State University

Process Groups

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:
* Parent (and further ancestors)

* Siblings

e Children (and further descendants)

A process can only send signals to members of its
process group

e Signals are a limited form of inter-process
communication used in Unix.

e Signals can be sent using system call
— int kill(pid_t pid, int sig);

Colorado State University

http://man7.org/linux/man-pages/man2/kill.2.html

Process Termination

 Process executes last statement and then asks
the operating system to delete it using the

exit () system call.
— Returns status data from child to parent (via wait ())

— Process’ resources are deallocated by operating
system
* Parent may terminate the execution of children
processes usingthekill() system call.
Some reasons for doing so:
— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

Colorado State University

Process Termination

Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

— cascading termination. All children, grandchildren, etc. are
terminated.

— The termination is initiated by the operating system.
The parent process may wait for termination of a child
process by using the wait () system call. The call returns
status information and the pid of the terminated process
pid = wait(&status) ;
If no parent waiting (did not invoke wait ()) processis a
zombie

If parent terminated without invoking wait, process is an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

Colorado State University

Multi-process Program Ex — Chrome Browser

e Early web browsers ran as single process

— If one web site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

— Browser process manages user interface, disk and
network 1/0

— Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened

* Runs in sandbox restricting disk and network 1/0O, minimizing
effect of security exploits

— Plug-in process for each type of plug-in

(a)
L) 0 @Wiley::Operating System Cq (x BBC - Homepage ﬁ The New York Times - Brea !-' Google Chrome - The web

€«-=>C O W.googlex%{hrome/mtl/‘en,’ma*/downIoad—machtml’brand:*}(l / A

@ Chrome mﬂd Features / English [
Each tab represents a separate process o ®
o - te University

Multitasking

Colorado State University

10

Cooperating Processes

* Independent process cannot affect or be
affected by the execution of another process

e Cooperating process can affect or be affected
by the execution of another process

* Advantages of process cooperation
— Information sharing
— Computation speed-up
— Modularity
— Convenience

» Colorado State University

Interprocess Communication

12

Processes within a system may be independent or
cooperating

Cooperating process can affect or be affected by other
processes, including sharing data

Reasons for cooperating processes:

— Information sharing

— Computation speedup

— Modularity

— Convenience
Cooperating processes need interprocess communication
(IPC)
Two models of IPC

— Shared memory
— Message passing

Colorado State University

Producer-Consumer Problem

e Common paradigm for cooperating
processes, producer process produces

information that is consumed by a consumer
process

— unbounded-buffer places no practical limit on the
size of the buffer

— bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.

Where does the bounded buffer “start
- It is circular

3 Colorado State University

Bounded-Buffer — Shared-Memory Solution

e Shared data
#define BUFFER SIZE 10

typedef struct ({ * in points to the next free position in the buffer
* out points to the first full position in the buffer.
} item; « Buffer is empty when in == out;
| e Buffer is full when
ttem buffer[BUFFER SIZE]; ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
int in =0 * This scheme can only use BUFFER_SIZE-1
int out = 0;
elements
Out In
0 1 2 3 4 5 6 7

(241)%8 =3 but (7+1)%8 =0

Colorado State University

14

Bounded-Buffer — Producer

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

Out In

Colorado State University

15

Bounded Buffer — Consumer

item next consumed;

while (true) {

while (1n == out)

; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Out In
v v
0 1 2 3 4 5 6 7

Colorado State University

16

17

Interprocess Communication — Shared Memory

Each process has its own private address
space.

An area of memory shared among the
processes that wish to communicate

The communication is under the control of Ohly one brocess
the user processes, not the operating system. may access

shared memory

Major issue is to provide mechanism that w ata time

allow the user processes to synchronize#fiei

actions when they access shared memory.

— Synchronization is discussed in great details in a
later Chapter.

Example soon.

Colorado State University

18

Interprocess Communication — Message Passing

Mechanism for processes to communicate
and to synchronize their actions

Message system — processes communicate
with each other without resorting to shared
variables

IPC facility provides two operations:
— send(message)
— receive(message)

The message size is either fixed or variable

Colorado State University

Message Passing (Cont.)

* If processes P and Q wish to communicate, they need
to:

— Establish a communication link between them
— Exchange messages via send/receive

* Implementation issues:
— How are links established?
— Can alink be associated with more than two processes?

— How many links can there be between every pair of
communicating processes?

— What is the capacity of a link?

— Is the size of a message that the link can accommodate
fixed or variable?

— Is a link unidirectional or bi-directional?

Colorado State University

19

Message Passing (Cont.)

* Implementation of communication link

— Physical:
e Shared memory
* Hardware bus
e Network

— Logical: Options (details next)

* Direct (process to process) or indirect (mail box)
* Synchronous (blocking) or asynchronous (non-blocking)
e Automatic or explicit buffering

Colorado State University

20

Direct Communication

* Processes must name each other explicitly:
— send (P. message) — send a message to process P

— receive(Q, message) — receive a message from
process Q

* Properties of communication link
— Links are established automatically

— Alink is associated with exactly one pair of
communicating processes

— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-
directional

Colorado State University

21

Indirect Communication

 Messages are directed and received from
mailboxes (also referred to as ports)
— Each mailbox has a unique id
— Processes can communicate only if they share a mailbox

* Properties of communication link

— Link established only if processes share a common
mailbox

— A link may be associated with many processes

— Each pair of processes may share several communication
links

— Link may be unidirectional or bi-directional

Colorado State University

22

Indirect Communication

23

Operations
— create a new mailbox (port)

— send and receive messages through mailbox
— destroy a mailbox

Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Colorado State University

Indirect Communication

24

* Mailbox sharing
— P, P,, and P5 share mailbox A
— P,, sends; P, and P; receive
— Who gets the message?

e Possible Solutions

— Allow a link to be associated with at most two
processes

— Allow only one process at a time to execute a
receive operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Colorado State University

25

Synchronization(blocking or not)

 Message passing may be either blocking or non-

blocking

* Blocking is termed synchronous

— Blocking send -- sender is blocked until message is received

— Blocking receive -- receiver is blocked until a message is
available

* Non-blocking is termed asynchronous

— Non-blocking send -- sender sends message and continues

— Non-blocking receive -- the receiver receives:
@® A valid message, or
@® Null message

B Different combinations possible
@® If both send and receive are blocking, we have a rendezvous.
@® Producer-Consumer problem: Easy if both block

Colorado State University

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

* Shared Memory
* Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs, SysV Message Queues, POSIX Message Queues, SysV
Shared memory, POSIX Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-backed and anonymous shared
memory using mmap, UNIX Domain Sockets, Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

Colorado State University

26

POSIX Shared Memory

B Older scheme (System V) us3d shmget(), shmat(), shmdt(),
shmctl()

B POSIX Shared Memory

@ First process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

® Returns file descriptor (1nt) which identifies the file
@ Also used to open an existing segment to share it
@ Set the size of the object

ftruncate (shm fd, 4096);

@® map the shared memory segment in the address space of the process
ptr = mmap (0,SIZE, PROT READ | PROT WRITE,
MAP SHARED, shm fd, 0);
@® Now the process could write to the shared memory
sprintf (ptr, "Writing to shared memory") ;

Colorado State University

27

Examples of IPC Systems - POSIX

B POSIX Shared Memory

@ Other process opens shared memory object name
shm fd = shm open(name, O RDONLY, 0666) ;
@®Returns file descriptor (int) which identifies
the file

@® map the shared memory object
ptr = mmap (0,SIZE, PROT READ, MAP SHARED,
shm fd, 0);
@® Now the process can read from to the shared memory object
printf (“$s”, (char *)ptr);
@® remove the shared memory object
shm unlink (name) ;

Colorado State University

28

IPC POSIX Producer

#tinclude <stdio.h>
#tinclude <stdlib.h>
#tinclude <string.h>
#tinclude <fcntl.h>
#tinclude <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name = "0S";

/* strings written to shared memory */
const char* message_0 = "Hello";
const char* message_1 = "World!";

/* shared memory file descriptor */
int shm_fd;

/* pointer to shared memory object */
char* ptr;

/* create the shared memory object */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm_fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

/* write to the shared memory object */
sprintf(ptr, "%s", message_0);

ptr += strlen(message_0);
sprintf(ptr, "%s", messagel);

Colorado State University

29

IPC POSIX Producer (details)

/* create the shared memory segment */

shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666); File descriptor FD: int that uniquely
identifies a file.

/* configure the size of the shared memory segment */

ftruncate(shm_fd,SIZE);

/* now map the shared memory segment in the address space of the process */
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {

printf("Map failed\n");

return -1;

}
/**

* Now write to the shared memory region.
*

* Note we must increment the value of ptr after each write.
*/

sprintf(ptr,"%s",message0);

ptr += strlen(message0);

sprintf(ptr,"%s",messagel);

ptr += strlen(messagel);

sprintf(ptr,"%s",message2);

ptr += strlen(message2);

return O;

0 Colorado State University

|IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{
/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name ="0S";

/* shared memory file descriptor */
int shm_fd;

/* pointer to shared memory object */
char *ptr;

/* open the shared memory object */
shm_fd = shm_open(name, O_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

/* read from the shared memory object */
printf("%s", (char*)ptr);

/* remove the shared memory object */
shm_unlink(name);
return O;

Colorado State University

31

32

/* open the shared memory segment */

*/

IPC POSIX Consumer (detail<)

Bit mask created
by ORing flags

shm_fd = shm_open(name, O_RDONLY, 0666);
if (shm_fd ==-1) {

printf("shared memory failed\n");

exit(-1);

} Memory
protection

/* now map the shared memory segs In the address space of the process

ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

if (ptr == MAP_FAILED) {
printf("Map failed\n");
exit(-1);

}

/* now read and print from the shared memory region */
printf("%s",ptr);

/* remove the shared memory segment */

if (shm_unlink(name) ==-1) {
printf("Error removing %s\n",name);
exit(-1);

) Colorado State University

Communications in Client-Server Systems

 Sockets

* Pipes

13 Colorado State University

Socket Communication

host X
(146.86.5.20) 80: HTTP (well known)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

* C5457 Computer
Networks and the
Internet

Colorado State University

34

35

Conduit allowing two processes to
communicate

* Ordinary (“anonymous”) pipes —Typically, a
parent process creates a pipe and uses it to
communicate with a child process that it
created. Cannot be accessed from outside
the process that created it. Created using
pipe() in Linux.

 Named pipes (“FIFO”) — can be accessed
without a parent-child relationship. Created
using fifo() in Linux.

Colorado State University

Ordinary Pipes

36

B Ordinary Pipes allow communication in standard producer-
consumer style

B Producer writes to one end (the write-end of the pipe)

B Consumer reads from the other end (the read-end of the
pipe)

B Ordinary pipes are therefore unidirectional (half duplex)

B Require parent-child relationship between communicating
processes

B pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the
write-end

parent child
fd[O] fd[1] fd[0] fd[1]

EE E

B Windows calls these anonymous pipes
For a process the file descriptors identify specific files.

Colorado State University

Arrows do not Show direction of transfer
Right: write-end for parent or child

Ordinary Pipes

B Pipe is a special type of file.
M Inherited by the child
B Must close unused portions of the the pipe

parent child
fd[0] fd[1] fd[0] fd[1]

EE E

Colorado State University

37

UNIX pipe example 1/2 (parent)

parent child

#define READ_END O fd[0] fd[1] fd0] fd[1]
#define WRITE_END 1

i = ipe ' '_I

int fd[2]; bl .

create the pipe: . .
if (pipe(fd) == -1) { Direction of flow

fprintf(stderr,"Pipe failed");

return 1;

fork a child process: child inherits
pid = fork();

the pipe

parent process:
/* close the unused end of the pipe */
close(fd[READ_END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */
close(fd[WRITE_END]);

18 Colorado State University

UNIX pipe example 2/2 (child)

parent child
fd[O] fd[1] fd[0] fd[1]

child process:

/* close the unused end of the pipe */
close(fd[WRITE_END]);

/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);

/* close the write end of the pipe */
close(fd[READ _END]);

10 Colorado State University

Named Pipes

40

Named Pipes (termed FIFO) are more
powerful than ordinary pipes

Communication is bidirectional

No parent-child relationship is necessary
between the communicating processes

Several processes can use the named pipe
for communication

Provided on both UNIX and Windows
systems

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Threads

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

41

Chapter 4: Threads

Objectives:
Thread—basis of multithreaded systems

APIs for the Pthreads and Java thread libraries
implicit threading, multithreaded programming

OS support for threads

code data files

code

data

files

registers stack

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

§<—— thread

single-threaded process

multithreaded process

Colorada$tate University

43

Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

Colorado State University

44

Modern applications are multithreaded

Most modern applications are multithreaded
— Became common with GUI

Threads run within application

Multiple tasks with the application can be
Implemented by separate threads

— Update display

— Fetch data

— Spell checking

— Answer a network request

Process creation is heavy-weight while thread
creation is light-weight

Can simplify code, increase efficiency
Kernels are generally multithreaded

Colorado State University

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

server > thread

U

(3) resume listening
for additional
client requests

Y

client

Colorado State University

45

46

* Responsiveness — may allow continued
execution if part of process is blocked,
especially important for user interfaces

- Resource Sharing - threads share
resources of process, easier than shared
memory or message passing

 Economy — cheaper than process creation
(10-100 times), thread switching lower
overhead than context switching

« Scalability — process can take advantage of
multiprocessor architectures

Colorado State University

Multicore Programming

47

* Multicore or multiprocessor systems putting
pressure on programmers, challenges include:
— Dividing activities
— Balance
— Data splitting
— Data dependency
— Testing and debugging
« Parallelism implies a system can perform more than
one task simultaneously
— Extra hardware needed for parallel execution
« Concurrency supports more than one task making
progress
— Single processor / core: scheduler providing concurrency

Colorado State University

Concurrency vs. Parallelism

B Concurrent execution on single-core system:

single core T4 To T3 Ty T4 To Ty Ty T4

time

B Parallelism on a multi-core system:

core 1 T4 T3 T4 Ts T4

core 2 Ts Ty To Ty To

Colorado State University

48

Multicore Programming (Cont.)

* Types of parallelism
— Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each
— Task parallelism — distributing threads across cores,
each thread performing unique operation
* As # of threads grows, so does architectural
support for threading
— CPUs have cores as well as hardware threads

- e.g. hyper-threading

— Oracle SPARC T4 with 8 cores, and 8 hardware threads per core
(total 64 threads)

— AMD Ryzen 7 with 4 cores and 8 threads

Colorado State University

49

50

Single and Multithreaded Processes

code

data

files

code

data

files

registers

stack

registers

registers

registers

thread — ;

stack

stack

stack

single-threaded process

D —

— thread

multithreaded process

Colorado State University

Process vs Thread

51

All threads in a process have same address
space (text, data, open files, signals etc.),
same global variables

Each thread has its own

— Thread ID

— Program counter

— Registers

— Stack: execution trail, local variables

— State (running, ready, blocked, terminated)

Thread is also a schedulable entity

Colorado State University

