
1 1

Colorado State University
Yashwant K Malaiya
Fall 2021 Lecture 6

Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
Programs with multiple processes is a new paradigm for you!
• When does the child process begin execution? fork ().

• What does fork() return?
– It returns the value 0 in the child process. Child’s PID is not zero

– In the parent fork() returns the PID of the child.

• How are PIDs assigned? By the kernel. Used to uniquely identify processes.

• What do they return?: getpid(), getppid()
• The parent and the child processes run concurrently. Which

finishes first?
– We don’t know. OS will switch them in and out of the processor

according to its will.
• Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The

child process is a separate process.
• Fork is the only way to create a process (after init).

3

FAQ
• Questions on wait() example: rv = wait(&wstatus);

– Caller will block until the child exits or finishes.
– on success, returns PID of the terminated child; on error, -1 is returned.

– Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

• If the child has exited and the parent hasn’t yet executed
wait().
– The child is in terminated (zombie) sate.

• Self exercise 2: Examine, compile and and run programs.

http://man7.org/linux/man-pages/man2/wait.2.html

4

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){

pid_t cid;

/* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
return 1;

}
else if (cid == 0) { /* child process */

printf("I am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/ls","ls",NULL);

}
else { /* parent process */

/* parent will wait for the child to complete */
printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");
}

return 0;
}

Parent and the child processes
run concurrently.

5

Process Group ID

• Process group is a collection of related
processes

• Each process has a process group ID
• Process group leader?
– Process with pid==pgid

• A process group has an associated controlling
terminal, usually the user’s keyboard
– Control-C: sends interrupt signal (SIGINT) to all

processes in the process group
– Control-Z: sends the suspend signal (SIGSTOP) to

all processes in the process group
Applies to foreground processes: those interacting
With the terminal

6

Process Groups

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.
By default, a Process Group comprises:
• Parent (and further ancestors)
• Siblings
• Children (and further descendants)
A process can only send signals to members of its
process group
• Signals are a limited form of inter-process

communication used in Unix.
• Signals can be sent using system call

– int kill(pid_t pid, int sig);

http://man7.org/linux/man-pages/man2/kill.2.html

7

Process Termination

• Process executes last statement and then asks
the operating system to delete it using the
exit() system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating

system
• Parent may terminate the execution of children

processes using the kill() system call.
Some reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does

not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

8

Process Termination
• Some operating systems do not allow child to exists if its

parent has terminated. If a process terminates, then all its
children must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);
• If no parent waiting (did not invoke wait()) process is a

zombie
• If parent terminated without invoking wait , process is an

orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

9

Multi-process Program Ex – Chrome Browser

• Early web browsers ran as single process
– If one web site causes trouble, entire browser can hang or

crash
• Google Chrome Browser is multiprocess with 3

different types of processes:
– Browser process manages user interface, disk and

network I/O
– Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
– Plug-in process for each type of plug-in

10

Multitasking

11

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation
– Information sharing
– Computation speed-up
– Modularity
– Convenience

12

Interprocess Communication
• Processes within a system may be independent or

cooperating
• Cooperating process can affect or be affected by other

processes, including sharing data
• Reasons for cooperating processes:

– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC
– Shared memory
– Message passing

13

Producer-Consumer Problem

• Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process
– unbounded-buffer places no practical limit on the

size of the buffer
– bounded-buffer assumes that there is a fixed

buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.
Where does the bounded buffer “start
- It is circular

14

Bounded-Buffer – Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 10
typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

• in points to the next free position in the buffer
• out points to the first full position in the buffer.
• Buffer is empty when in == out;
• Buffer is full when

((in + 1) % BUFFER SIZE) == out. (Circular buffer)
• This scheme can only use BUFFER_SIZE-1

elements

Out In

0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

15

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Out In

0 1 2 3 4 5 6 7

16

Bounded Buffer – Consumer
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Out In

0 1 2 3 4 5 6 7

17

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.
• Example soon.

Only one process
may access

shared memory
at a time

18

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)
– receive(message)

• The message size is either fixed or variable

19

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

20

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory
• Hardware bus
• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)
• Synchronous (blocking) or asynchronous (non-blocking)
• Automatic or explicit buffering

21

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from

process Q
• Properties of communication link
– Links are established automatically
– A link is associated with exactly one pair of

communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-

directional

22

Indirect Communication

• Messages are directed and received from
mailboxes (also referred to as ports)
– Each mailbox has a unique id
– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox
– A link may be associated with many processes
– Each pair of processes may share several communication

links
– Link may be unidirectional or bi-directional

23

Indirect Communication

• Operations
– create a new mailbox (port)
– send and receive messages through mailbox
– destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

24

Indirect Communication

• Mailbox sharing
– P1, P2, and P3 share mailbox A
– P1, sends; P2 and P3 receive
– Who gets the message?

• Possible Solutions
– Allow a link to be associated with at most two

processes
– Allow only one process at a time to execute a

receive operation
– Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

25

Synchronization(blocking or not)

• Message passing may be either blocking or non-
blocking

• Blocking is termed synchronous
– Blocking send -- sender is blocked until message is received
– Blocking receive -- receiver is blocked until a message is

available
• Non-blocking is termed asynchronous

– Non-blocking send -- sender sends message and continues
– Non-blocking receive -- the receiver receives:

! A valid message, or
! Null message

! Different combinations possible
! If both send and receive are blocking, we have a rendezvous.
! Producer-Consumer problem: Easy if both block

26

Examples of IPC Systems
OSs support many different forms of IPC*. We will look at
two of them
• Shared Memory
• Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs, SysV Message Queues, POSIX Message Queues, SysV
Shared memory, POSIX Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-backed and anonymous shared
memory using mmap, UNIX Domain Sockets, Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

27

POSIX Shared Memory

! Older scheme (System V) us3d shmget(), shmat(), shmdt(),
shmctl()

! POSIX Shared Memory
! First process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
! Returns file descriptor (int) which identifies the file

! Also used to open an existing segment to share it
! Set the size of the object

ftruncate(shm_fd, 4096);
! map the shared memory segment in the address space of the process
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, shm_fd, 0);
! Now the process could write to the shared memory
sprintf(ptr, "Writing to shared memory");

28

Examples of IPC Systems - POSIX

! POSIX Shared Memory
! Other process opens shared memory object name
shm_fd = shm_open(name, O_RDONLY, 0666);
!Returns file descriptor (int) which identifies
the file

!map the shared memory object
ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED,
shm_fd, 0);
! Now the process can read from to the shared memory object
printf(“%s”, (char *)ptr);

! remove the shared memory object
shm_unlink(name);

29

IPC POSIX Producer
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name = "OS";

/* strings written to shared memory */
const char* message_0 = "Hello";
const char* message_1 = "World!";

/* shared memory file descriptor */
int shm_fd;

/* pointer to shared memory object */
char* ptr;

/* create the shared memory object */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm_fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

/* write to the shared memory object */
sprintf(ptr, "%s", message_0);

ptr += strlen(message_0);
sprintf(ptr, "%s", message1);
ptr += strlen(message_1);
return 0;

30

IPC POSIX Producer (details)
/* create the shared memory segment */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory segment */
ftruncate(shm_fd,SIZE);

/* now map the shared memory segment in the address space of the process */
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {

printf("Map failed\n");
return -1;

}

/**
* Now write to the shared memory region.
*
* Note we must increment the value of ptr after each write.
*/

sprintf(ptr,"%s",message0);
ptr += strlen(message0);
sprintf(ptr,"%s",message1);
ptr += strlen(message1);
sprintf(ptr,"%s",message2);
ptr += strlen(message2);

return 0;
}

File descriptor FD: int that uniquely
identifies a file.

31

IPC POSIX Consumer
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name = "OS";

/* shared memory file descriptor */
int shm_fd;

/* pointer to shared memory object */
char *ptr;

/* open the shared memory object */
shm_fd = shm_open(name, O_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

/* read from the shared memory object */
printf("%s", (char*)ptr);

/* remove the shared memory object */
shm_unlink(name);
return 0;

}

32

IPC POSIX Consumer (details)
/* open the shared memory segment */

shm_fd = shm_open(name, O_RDONLY, 0666);
if (shm_fd == -1) {

printf("shared memory failed\n");
exit(-1);

}

/* now map the shared memory segment in the address space of the process
*/

ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {

printf("Map failed\n");
exit(-1);

}

/* now read and print from the shared memory region */
printf("%s",ptr);

/* remove the shared memory segment */
if (shm_unlink(name) == -1) {

printf("Error removing %s\n",name);
exit(-1);

}

Bit mask created
by ORing flags

Mode

Memory
protection

Flag

33

Communications in Client-Server Systems

• Sockets
• Remote Procedure Calls
• Pipes
• Remote Method Invocation (Java)

34

Socket Communication

• CS457 Computer
Networks and the
Internet

80: HTTP (well known)

35

Pipes

Conduit allowing two processes to
communicate
• Ordinary (“anonymous”) pipes –Typically, a

parent process creates a pipe and uses it to
communicate with a child process that it
created. Cannot be accessed from outside
the process that created it. Created using
pipe() in Linux.

• Named pipes (“FIFO”) – can be accessed
without a parent-child relationship. Created
using fifo() in Linux.

36

Ordinary Pipes

" Ordinary Pipes allow communication in standard producer-
consumer style

" Producer writes to one end (the write-end of the pipe)
" Consumer reads from the other end (the read-end of the

pipe)
" Ordinary pipes are therefore unidirectional (half duplex)
" Require parent-child relationship between communicating

processes
" pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the

write-end

" Windows calls these anonymous pipes
Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

37

Ordinary Pipes

! Pipe is a special type of file.
! Inherited by the child
!Must close unused portions of the the pipe

38

UNIX pipe example 1/2 (parent)
#define READ_END 0
#define WRITE_END 1

int fd[2];

create the pipe:
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

fork a child process:
pid = fork();

parent process:
/* close the unused end of the pipe */
close(fd[READ_END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */
close(fd[WRITE_END]);

Child inherits
the pipe

Direction of flow

39

UNIX pipe example 2/2 (child)

child process:
/* close the unused end of the pipe */
close(fd[WRITE_END]);

/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);

/* close the write end of the pipe */
close(fd[READ_END]);

direction

40

Named Pipes

• Named Pipes (termed FIFO) are more
powerful than ordinary pipes

• Communication is bidirectional
• No parent-child relationship is necessary

between the communicating processes
• Several processes can use the named pipe

for communication
• Provided on both UNIX and Windows

systems

41 41

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

42 42

Chapter 4: Threads
Objectives:
• Thread—basis of multithreaded systems
• APIs for the Pthreads and Java thread libraries
• implicit threading, multithreaded programming
• OS support for threads

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

43

Chapter 4: Threads
• Overview
• Multicore Programming
• Multithreading Models
• Thread Libraries
• Implicit Threading
• Threading Issues
• Operating System Examples

44

Modern applications are multithreaded

• Most modern applications are multithreaded
– Became common with GUI

• Threads run within application
• Multiple tasks with the application can be

implemented by separate threads
– Update display
– Fetch data
– Spell checking
– Answer a network request

• Process creation is heavy-weight while thread
creation is light-weight

• Can simplify code, increase efficiency
• Kernels are generally multithreaded

45

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

46

Benefits
• Responsiveness – may allow continued

execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing – threads share
resources of process, easier than shared
memory or message passing

• Economy – cheaper than process creation
(10-100 times), thread switching lower
overhead than context switching

• Scalability – process can take advantage of
multiprocessor architectures

47

Multicore Programming
• Multicore or multiprocessor systems putting

pressure on programmers, challenges include:
– Dividing activities
– Balance
– Data splitting
– Data dependency
– Testing and debugging

• Parallelism implies a system can perform more than
one task simultaneously
– Extra hardware needed for parallel execution

• Concurrency supports more than one task making
progress
– Single processor / core: scheduler providing concurrency

48

Concurrency vs. Parallelism
! Concurrent execution on single-core system:

! Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

49

Multicore Programming (Cont.)

• Types of parallelism
– Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each
– Task parallelism – distributing threads across cores,

each thread performing unique operation
• As # of threads grows, so does architectural

support for threading
– CPUs have cores as well as hardware threads

• e.g. hyper-threading
– Oracle SPARC T4 with 8 cores, and 8 hardware threads per core

(total 64 threads)
– AMD Ryzen 7 with 4 cores and 8 threads

50

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

51

Process vs Thread
• All threads in a process have same address

space (text, data, open files, signals etc.),
same global variables

• Each thread has its own
– Thread ID
– Program counter
– Registers
– Stack: execution trail, local variables
– State (running, ready, blocked, terminated)

• Thread is also a schedulable entity

