
1 1

Colorado State University
Yashwant K Malaiya

Fall 21 Lecture 7 Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Today
• Pipes
• Threads
• Amdahl’s law
• Kernel support for threads
• Pthreads
• Java Threads
• Implicit threading

3

Pipes

Conduit allowing two processes to
communicate
• Ordinary (“anonymous”) pipes –Typically, a

parent process creates a pipe and uses it to
communicate with a child process that it
created. Cannot be accessed from outside
the process that created it. Created using
pipe() in Linux.

• Named pipes (“FIFO”) – can be accessed
without a parent-child relationship. Created
using fifo() in Linux.

4

Ordinary Pipes

! Ordinary Pipes allow communication in standard producer-
consumer style

! Producer writes to one end (the write-end of the pipe)
! Consumer reads from the other end (the read-end of the

pipe)
! Ordinary pipes are therefore unidirectional (half duplex)
! Require parent-child relationship between communicating

processes
! pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the

write-end

! Windows calls these anonymous pipes
Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

5

Ordinary Pipes

! Pipe is a special type of file.
! Inherited by the child
! Accessed using 2 file descriptors by each process.
!Must close unused portions of the the pipe

6

UNIX pipe example 1/2 (parent)
#define READ_END 0
#define WRITE_END 1

int fd[2];

create the pipe:
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

fork a child process:
pid = fork();

parent process:
/* close the unused end of the pipe */
close(fd[READ_END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */
close(fd[WRITE_END]);

Child inherits
the pipe

Direction of flow
Parent to child

7

UNIX pipe example 2/2 (child)

child process:
/* close the unused end of the pipe */
close(fd[WRITE_END]);

/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);

/* close the write end of the pipe */
close(fd[READ_END]);

Direction of flow

8

Named Pipes

• Named Pipes (termed FIFO) are more
powerful than ordinary pipes

• Communication is bidirectional
• No parent-child relationship is necessary

between the communicating processes
• Several processes can use the named pipe

for communication
• Provided on both UNIX and Windows

systems

9 9

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

10 10

Chapter 4: Threads
Objectives:
• Thread—basis of multithreaded systems
• APIs for the Pthreads and Java thread libraries
• implicit threading, multithreaded programming
• OS support for threads

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

11

Chapter 4: Threads
• Overview
• Multicore Programming
• Multithreading Models
• Thread Libraries
• Implicit Threading
• Threading Issues
• Operating System Examples

12

Modern applications are multithreaded

• Most modern applications are multithreaded
– Became common with GUI

• Threads run within application
• Multiple tasks with the application can be

implemented by separate threads
– Update display
– Fetch data
– Spell checking
– Answer a network request

• Process creation is heavy-weight while thread
creation is light-weight

• Can simplify code, increase efficiency
• Kernels are generally multithreaded

13

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

14

Benefits
• Responsiveness – may allow continued

execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing – threads share
resources of process, easier than shared
memory or message passing

• Economy – cheaper than process creation
(10-100 times), thread switching lower
overhead than context switching

• Scalability – process can take advantage of
multiprocessor architectures

15

Multicore Programming
• Multicore or multiprocessor systems putting

pressure on programmers, challenges include:
– Dividing activities
– Balance
– Data splitting
– Data dependency
– Testing and debugging

• Parallelism implies a system can perform more than
one task simultaneously
– Extra hardware needed for parallel execution

• Concurrency supports more than one task making
progress
– Single processor / core: scheduler providing concurrency

16

Concurrency vs. Parallelism
! Concurrent execution on single-core system:

! Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

17

Multicore Programming (Cont.)

• Types of parallelism
– Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each
– Task parallelism – distributing threads across cores,

each thread performing unique operation
• As # of threads grows, so does architectural

support for threading
– CPUs have cores as well as hardware threads

• e.g. hyper-threading
– Oracle SPARC T4 with 8 cores, and 8 hardware threads per core

(total 64 threads)
– AMD Ryzen 7 with 4 cores and 8 threads

18

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

19

Process vs Thread
• All threads in a process have same address

space (text, data, open files, signals etc.),
same global variables

• Each thread has its own
– Thread ID
– Program counter
– Registers
– Stack: execution trail, local variables
– State (running, ready, blocked, terminated)

• Thread is also a schedulable entity

20

Amdahl’s Law
Identifies performance gains from adding additional cores to an
application that has both serial and parallel components.
• S is serial portion (as a fraction) that cannot be broken into

parallel operations.
• Some things can possibly be done in parallel.
• N processing cores

• Example: if application is 75% parallel / 25% serial, moving from
1 to 2 cores results in speedup of 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

21

Amdahls law: ordinary life example

• Amdahls law: ordinary life example.
Which of the two option is faster?

– Person A cooks, person B eats and then Person C
eats.

– Person A cooks, then both person B and person C
eat at the same time.

A

B

C

A

B C

22

User Threads and Kernel Threads
• User threads - management done by user-level

threads library
• Three main thread libraries:
– POSIX Pthreads
– Windows threads
– Java threads

• Kernel threads - Supported by the Kernel
– Examples – virtually all general-purpose operating

systems, including:
• Windows
• Linux
• Mac OS X

23

Multithreading Models
How do kernel threads support user process
threads?

• Many-to-One

• One-to-One (now common)

• Many-to-Many

24

Many-to-One
• Many user-level threads mapped

to single kernel thread (thread
library in user space older model)

• One thread blocking causes all
to block

• Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

• Few systems currently use this
model

• Examples:
– Solaris Green Threads for Java

1996

– GNU Portable Threads 2006

user thread

kernel threadk

25

One-to-One
• Each user-level thread maps to kernel

thread
• Creating a user-level thread creates a

kernel thread
• More concurrency than many-to-one
• Number of threads per process

sometimes restricted due to overhead
• Examples

– Windows
– Linux
– Solaris 9 and later

user thread

kernel threadkkkk

26

Many-to-Many Model
• Allows many user level

threads to be mapped to
smaller or equal number
of kernel threads

• Allows the operating
system to create a
sufficient number of kernel
threads

• Solaris prior to version 9
2002-3

• Windows with the
ThreadFiber package NT/2000

user thread

kernel threadkkk

27

Two-level Model

• Similar to M:M, except that it allows a
user thread to be bound to a kernel
thread

• Examples
– IRIX -2006

– HP-UX
– Tru64 UNIX
– Solaris 8 and earlier

user thread

kernel threadkkk k

28

Thread Libraries

• Thread library provides programmer
with API for creating and managing
threads

• Two primary ways of implementing
– Library entirely in user space
– Kernel-level library supported by the OS

29

POSIX Pthreads

• May be provided either as user-level or
kernel-level

• A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization 1991

• Specification, not implementation
• API specifies behavior of the thread library,

implementation is up to development of the
library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

30

Some Pthread management functions

POSIX function Description
pthread_cancel Terminate a thread
pthread_create Create a thread
pthread_detach Set thread to release resources
pthread_exit Exit a thread without exiting process
pthread_kill Send a signal to a thread
pthread_join Wait for a thread
pthread_self Find out own thread ID
• Return 0 if successful

31

POSIX: Thread creation pthread_create()

• Automatically makes the thread runnable without a
start operation

• Takes 3 parameters:
– Points to ID of newly created thread
– Attributes for the thread

– Stack size, scheduling information, etc.

– Name of function that the thread calls when it begins
execution with argument

/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

32

POSIX: Detaching and Joining

• pthread_detach()
– Sets internal options to specify that storage for thread can

be reclaimed when it exits
– 1 parameter: Thread ID of the thread to detach
– Undetached threads don’t release resources until

• Another thread calls pthread_join for them
• Or the whole process exits

• pthread_join
– Takes ID of the thread to wait for
– Suspends calling thread till target terminates
– Similar to waitpid at the process level
pthread_join(tid, NULL);

33

POSIX: Exiting and cancellation

• If a process calls exit, all threads terminate
• Call to pthread_exit causes only the calling thread to

terminate
pthread_exit(0)
• Threads can force other threads to return through a

cancellation mechanism
– pthread_cancel (): takes thread ID of target
– Actual cancellation depends on type and state of thread

34

Pthreads Example (next 2 slides)

• This process will have two threads
– Initial/main thread to execute the main () function. It

crates a new thread and waits for it to finish.
– A new thread that runs function runner ()

• It will get a parameter, an integer, and will compute the sum of all
integers from 1 to that number.

• New thread leaves the result in a global variable sum.

– The main thread prints the result.

35

Pthreads Example Pt 1
#include <pthread.h>
#include <stdio.h>

int sum; /* this global data is shared by the thread(s) */

void *runner(void *param); /* the thread */

int main(int argc, char *argv[])
{
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of attributes for the thread */

if (argc != 2) {
fprintf(stderr,"usage: a.out <integer value>\n");
/*exit(1);*/
return -1;

}

if (atoi(argv[1]) < 0) {
fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));
/*exit(1);*/
return -1;

}

thread runner will
perform summation
of integers 1,2, ..n

36

Pthreads Example Pt 2
/* get the default attributes */
pthread_attr_init(&attr);
/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);
/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n", sum);
}
/* The thread will begin control in this function */
void *runner(void *param)
{
int i, upper = atoi(param);
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}
pthread_exit(0);

}

Compile using
gcc thrd.c –lpthread

Execution:
%./thrd 4
sum = 10

<- Second thread begins in runner () function

37

Pthreads Code for multipleThreads

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);
}
/* Each thread will begin control in this function */

void *runner(void *param)
{

/* do some work ... */
pthread_exit(0);
}

38

Java Threads
• Java threads are managed by the JVM
• Typically implemented using the threads model

provided by underlying OS
• Java threads may be created by:

– Extending Thread class
• Override its run() method

– More commonly, implementing the Runnable
interface

1. Has 1 method run()
2. Create new Thread class by passing a

Runnable object to its constructor
3. start() method creates a new thread by calling

the run() method.
- new features available in java.util.concurrent

package

Runnable interface is defined by

39

Java Thread States

https://www.javatpoint.com/life-cycle-of-a-thread

https://www.javatpoint.com/life-cycle-of-a-thread

40

Ex: Using Java Threads (1/3)
Java version of a multithreaded program that computes summation of a non-negative
integer.
This program creates a separate thread by implementing the Runnable interface.

class Sum
{

private int sum;

public int get() {
return sum;

}

public void set(int sum) {
this.sum = sum;

}
}

Program Overall Structure
class sum
{ }
class summation implements runnable
{ …

public void run() { .. }
}
Public class Driver

{ …..
public static void main(String[] args) {

Thread worker = new Thread(new summation(…
worker.start();
try {

worker.join(); ….
}

41

Ex: Using Java Threads (2/3)
class Summation implements Runnable
{

private int upper;
private Sum sumValue;

//constructor
public Summation(int upper, Sum sumValue) {

if (upper < 0)
throw new IllegalArgumentException();

this.upper = upper;
this.sumValue = sumValue;

}

//this method runs as a separate thread
public void run() {

int sum = 0;

for (int i = 0; i <= upper; i++)
sum += i;

sumValue.set(sum);
}

}

42

Ex: Using Java Threads (3/3)
public class Driver
{

public static void main(String[] args) {
if (args.length != 1) {

System.err.println("Usage Driver <integer>");
System.exit(0);

}

Sum sumObject = new Sum();
int upper = Integer.parseInt(args[0]);

Thread worker = new Thread(new Summation(upper, sumObject));
worker.start();
try {

worker.join();
} catch (InterruptedException ie) { }
System.out.println("The sum of " + upper + " is " + sumObject.get());

}
}

A call to
run()

43

Implicit Threading
• Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads
• Creation and management of threads done by compilers

and run-time libraries rather than programmers
• Three methods explored

– Thread Pools
– OpenMP
– Grand Central Dispatch

• Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

44

Implicit Threading1: Thread Pools
• Create a number of threads in a pool where they await

work
• Advantages:

– Usually slightly faster to service a request with an
existing thread than create a new thread

– Allows the number of threads in the application(s) to be
bound to the size of the pool

– Separating task to be performed from mechanics of
creating task allows different strategies for running task
• i.e.Tasks could be scheduled to run periodically

• Posix thread pools
• Windows API supports thread pools.

45

Implicit Threading2: OpenMP
• Set of compiler directives and an

API for C, C++, FORTRAN
• Provides support for parallel

programming in shared-memory
environments

• Identifies parallel regions –
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

#pragma omp parallel for
for(i=0;i<N;i++) {
c[i] = a[i] + b[i];

}

Run for loop in parallel

Compile using
gcc -fopenmp openmp.c

Self exercise 3, 4 available now.

46

Implicit Threading3:Grand Central Dispatch

• Apple technology for Mac OS X and iOS
operating systems

• Extensions to C, C++ languages, API, and
run-time library

• Allows identification of parallel sections
• Manages most of the details of threading
• Block is in “^{ }”

- ˆ{ printf("I am a block"); }
• Blocks placed in dispatch queue

– Assigned to available thread in thread pool when
removed from queue

