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FAQ
• A process is isolated from other processes. Processes can run concurrently. Can 

have multiple threads.

• A thread is not isolated from other threads belonging to the same process. Runs 
concurrently with other threads.  

• POSIX: Portable Operating System Interface is a family of IEEE standards. It defines application 
programming interface (API), command line shells and utility interfaces, compatibility with variants of OSs.

• Processes/threads/IPC/IO.

• What is a pthread? POSIX compliant implementation of threads.

• A function when called within a new thread, runs concurrently with other threads.

• Java threads? Most JVMs implement threads with native, OS level threads,

• Examples of threads: Self exercise set 4
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Threads
We have seen 
• What are threads (vs processes)
• Pthreads: commands, example
• Java threads: example
• Implicit threading
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Implicit Threading2: OpenMP
• Set of compiler directives and an 

API for C, C++, FORTRAN 
• Provides support for parallel 

programming in shared-memory 
environments

• Identifies parallel regions –
blocks of code that can run in 
parallel

#pragma omp parallel 

Create as many threads as there are 
cores

#pragma omp parallel for 
for(i=0;i<N;i++) { 
c[i] = a[i] + b[i]; 

} 

Run for loop in parallel

Compile using
gcc -fopenmp openmp.c

Self exercise 3, 4 available now.
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Implicit Threading3:Grand Central Dispatch

• Apple technology for Mac OS X and iOS 
operating systems

• Extensions to C, C++ languages, API, and 
run-time library

• Allows identification of parallel sections
• Manages most of the details of threading
• Block is in “^{ }” 

- ˆ{ printf("I am a block"); } 
• Blocks placed in dispatch queue

– Assigned to available thread in thread pool when 
removed from queue
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Threading Issues

• Semantics of fork() and exec() system 
calls

• Signal handling
– Synchronous and asynchronous

• Thread cancellation of target thread
– Asynchronous or deferred

• Thread-local storage
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Semantics of fork() and exec()

• Does fork()duplicate only the 
calling thread or all threads?
– Some UNIXes have two versions of fork
– 1.  when exec( ) will replace the entire 

process, dup just that thread
– 2. duplicate all threads

• exec() usually works as normal –
replace the running process including 
all threads
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Signal Handling
• Signals are used in UNIX systems to notify a 

process that a particular event has occurred.
• A signal handler is used to process signals

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

• Every signal has default handler that kernel 
runs when handling signal
– User-defined signal handler can override default
– For single-threaded, signal delivered to process
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Signal Handling (Cont.)
• Where should a signal be delivered for 

multi-threaded process? 
– Deliver the signal to the thread to which the 

signal applies?
– Deliver the signal to every thread in the 

process?
– Deliver the signal to certain threads in the 

process?
– Assign a specific thread to receive all signals 

for the process? common
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Thread Cancellation
• Terminating a thread before it has finished
• Thread to be canceled is target thread
• Two general approaches:

– Asynchronous cancellation terminates the target 
thread immediately

– Deferred cancellation allows the target thread to 
periodically check if it should be cancelled

• Pthread code to create and cancel a thread:

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS,  NULL);
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Thread Cancellation (Cont.)
! Invoking thread cancellation requests cancellation, but 

actual cancellation depends on thread state

! A thread’s cancelation type (mode) and state can be set.
! If thread has cancellation disabled, cancellation remains 

pending until thread enables it
! Default type is deferred

! Cancellation only occurs when thread reaches cancellation 
point
4 I.e. pthread_testcancel()
4Then cleanup handler is invoked

! On Linux systems, thread cancellation is handled through 
signals
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Thread-Local Storage
Thread-local storage (TLS) allows each thread 
to have its own copy of data
• Useful when you do not have control over the 

thread creation process (i.e., when using a 
thread pool)
– Ex: Each transaction has a thread and a transaction 

identifier is needed.
• Different from local variables

– Local variables visible only during single function 
invocation

– TLS visible across function invocations
• Similar to static data

– TLS is unique to each thread
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Is complexity always good?

• Is something that is 
– More advanced
– More complex
Generally better?
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Hyper-threading

• “Hyper-threading”: simultaneous 
multithreading: 
– Hardware support for multiple threads in the same 

core (CPU)
• Performance:
– performance improvements are very application-

dependent
– Higher energy consumption ARM 2006

– Not better than out-of-order execution Intel 2013

– Intel has dropped it in some chips Core i7-9700K   2018  8 cores, 8 threads
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Parallelism

Forms of paralleism
– Pipelining: instruction flows though multiple levels
– Multiple issue: Instruction level Parallelism (ILP)

• Static: compiler scheduling of instructions
• Dynamic: hardware assisted scheduling of operations

– “Superscalar” processors
– CPU decides whether to issue 0, 1, 2, … instructions 

each cycle

– Thread or task level parallelism (TLP)
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Chapter 5:  CPU Scheduling

• Basic Concepts
• Scheduling Criteria 
• Scheduling Algorithms
• Thread Scheduling
• Multiple-Processor Scheduling
• Real-Time CPU Scheduling
• Operating Systems Examples
• Algorithm Evaluation
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Diagram of Process State

Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: Input available
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Basic Concepts

• Maximum CPU 
utilization obtained 
with multiprogramming

• CPU–I/O Burst Cycle –
Process execution 
consists of a cycle of 
CPU execution and I/O 
wait

• CPU burst followed by 
I/O burst

• CPU burst distribution 
is of main concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•
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Histogram of CPU-burst Times

Typical distribution of CPU bursts. Most CPU bursts are just a few ms.
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CPU Scheduler
! Short-term scheduler selects from among the processes 

in ready queue, and allocates the CPU to one of them
! Queue may be ordered in various ways

! CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

! Scheduling under 1 and 4 is nonpreemptive
! All other scheduling is preemptive. These need to be 

considered
! access to shared data by multiple processes
! preemption while in kernel mode
! interrupts occurring during crucial OS activities

Not
Controlled by 
the  process
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Dispatcher

• Dispatcher module gives control of the 
CPU to the process selected by the short-
term scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user 

program to restart that program

• Dispatch latency – time it takes for the 
dispatcher to stop one process and start 
another running
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The Dispatcher (dentist’s office)
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Scheduling Criteria

• CPU utilization – keep the CPU as busy as 
possible: Maximize

• Throughput – # of processes that complete their 
execution per time unit: Maximize

• Turnaround time –time to execute a process 
from submission to completion:  Minimize

• Waiting time – amount of time a process has 
been waiting in the ready queue: Minimize

• Response time –time it takes from when a 
request was submitted until the first response is 
produced, not output  (for time-sharing 
environment): Minimize
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Terms for a single process

UCLA
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Scheduling Algorithms

We will now examine several major scheduling 
approaches
• Decide which process in the ready queue is 

allocated the CPU 
• Could be preemptive or nonpreemptive
– preemptive: remove in middle of execution 

(“forced”)

• Optimize measure of interest 
– We will use Gantt charts to illustrate schedules 
– Bar chart with start and finish times for processes 

Involuntary 
deboarding! 

https://www.youtube.com/watch?v=VrDWY6C1178
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Nonpreemptive vs   Preemptive  sheduling

• Nonpreemptive: Process keeps CPU until it 
relinquishes it when
– It terminates
– It switches to the waiting state
– Used by initial versions of OSs like Windows 3.x

• Preemptive scheduling
– Pick a process and let it run for a maximum of some 

fixed time
– If it is still running at the end of time interval?

• Suspend it  and  pick another process to run

• A clock interrupt at the end of the time interval 
to  give control back of CPU back to scheduler
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Scheduling Algorithms

• First- Come, First-Served (FCFS) 
• Shortest-Job-First (SJF) 
– Shortest-remaining-time-first

• Priority Scheduling
• Round Robin (RR) with time quantum
• Multilevel Queue
– Multilevel Feedback Queue

• “Completely fair”
Comparing Performance
• Average waiting time etc.



29

First- Come, First-Served (FCFS) Scheduling

• Process requesting CPU first, gets it first 
• Managed with a FIFO queue
– When process enters ready queue 

• PCB is tacked to the tail of the queue 

– When CPU is free
• It is allocated to process at the head of the queue 

• Simple to write and understand 
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , 
P3  but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 =       ;  P2 =       ; P3 =     
• Average waiting time:  (      +      +     )/    =  
• Throughput:         /          = per unit time

P P P1 2 3

0 24 3027

Henry Gantt, 
1910s

Pause for students to do the computation
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , 
P3  but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 =  0;  P2 =  24; P3 =  27
• Average waiting time:  (   0  +  24   + 27 )/3 = 17
• Throughput:        3/ 30 = 0.1 per unit time

P P P1 2 3

0 24 3027

Henry Gantt, 
1910s
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FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time:   (6 + 0 + 3)/3 = 3

– Much better than previous case
• But note -Throughput: 3/30 = 0.1 per unit same
• Convoy effect - short processes behind a long process

– Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3
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Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next 
CPU burst
– Use these lengths to schedule the process with the 

shortest time
• Reduction in waiting time for short process 

GREATER THAN  Increase in waiting time for long 
process

• SJF is optimal – gives minimum average waiting 
time for a given set of processes
– The difficulty is knowing the length of the next CPU 

request
– Estimate or could ask the user
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Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (      +       +      +      ) /   =

Pause for students to do the computation
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Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2
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Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to 
the recent bursts
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU 
bursts, using exponential averaging

• Commonly, α set to ½

:  Define4.
10 ,  3.

burst  CPUnext  for the  valuepredicted   2.
burst  CPU  of length  actual  1.

1

££
=

=

+

aa
t n

th
n nt

( ) .1 1 nnn t taat -+=+
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Prediction of the Length of the Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Blue points: guess
Black points: actual
α = 0.5

Ex:
0.5x6 +0.5x10 = 8
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Examples of Exponential Averaging

• a =0
– tn+1 = tn
– Recent history does not count

• a =1
– tn+1 = a tn
– Only the actual last CPU burst counts

•
• If we expand the formula, substituting for  tn , we 

get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a )ja tn -j + …
+(1 - a )n +1 t0

• Since both a and (1 - a) are less than or equal to 
1, each successive term has less weight than its 
predecessor

Widely used for 
predicting stock-

market etc

( ) .1 1 nnn t taat -+=+
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Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and 
preemption to the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4 (will preempt because 4<7)

P3 2 9 (will not preempt)

P4 3 5
• Preemptive SJF Gantt Chart  

• Average waiting time for P1,P2,P3,P4
= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17

• Preemptive version called shortest-remaining-time-first
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Priority Scheduling
• A priority number (integer) is associated with each 

process
• The CPU is allocated to the process with the highest 

priority (smallest integer º highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of 
predicted next CPU burst time

• Problem º Starvation – low priority processes may 
never execute
– Solution º Aging – as time progresses increase the priority of 

the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094!  J
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Ex Priority Scheduling non-preemptive

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1 (highest)

P3 2 4
P4 1 5
P5 5 2

• P1,P2, P3, P4,P5  all arrive at time 0. 
• Priority scheduling Gantt Chart

• Average waiting time  for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec
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Round Robin (RR) with time quantum

• Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds.  After this, the process is 
preempted, added to the end of the ready queue.

• If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large Þ FIFO
– q small Þ q must be large with respect to context switch, 

otherwise overhead is too high  (overhead typically in 0.5% 
range)
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Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

• Arrive a time 0 in order P1, P2, P3: The Gantt chart is: 

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66 
units

• Typically, higher average turnaround than SJF, but better 
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 µsec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution
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Time Quantum and Context Switch Time

Much smaller quantum compared to burst: many switches
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Turnaround Time Varies With The Time Quantum

Rule of thumb: 80% of CPU bursts 
should be shorter than q

Illustration
Consider q=7:
Turnaround times for P1,P2,P3,P4: 
6,9,10,17  av = 10.5
Similarly for q =1, ..6 (verify yourself)

Students: Repeat for q = 1, ..6 at home to verify the plot.


