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Fall 2021 Lecture 9 

CPU Scheduling

CS370 Operating Systems

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources
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Questions from last time
• Scheduling time unit: often millisec (1/1000 of a sec)
• Estimation & probabilistic approaches in computing 

optimal algorithms, cache, virtual memory, data centers etc. Based on field/recent data.

• Prediction of next burst
– Based on actual recent duration and predicted value (which is based on past actual 

values)
– More recent data points get more weight (based on alpha). 
– Initial prediction? Prior field data

• Shortest Job First (SJF) vs Preemptive SJF
– SJF is not preemptive
– Preemptive SJF (also termed Shortest remaining time first)
– Priority scheduling can also be preemptive or non-preemptive
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Scheduling Criteria

• CPU utilization – keep the CPU as busy as 
possible: Maximize

• Throughput – # of processes that complete their 
entire execution per time unit: Maximize

• Turnaround time –time to execute a process 
from submission to completion:  Minimize

• Waiting time – total amount of time a process has 
been waiting in the ready queue: Minimize

• Response time –time it takes from when a 
request was submitted until the first response is 
produced (assumption: beginning of execution), not final output  
(for time-sharing environment): Minimize
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  but 
almost the same time 0.
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time:  (0 + 24 + 27)/3 = 17

• Throughput: processes finished per unit time 3/30 = 0.1 per unit
• Turnaround time for P1, P2, P3 = 24, 27, 30 thus average = 8.2
• Response time for P1, P2, P3 = 0, 24, 27 assuming .. Thus the average 

is ..

P P P1 2 3

0 24 3027

Turnaround time –time to execute a process from submission to completion.
Response time –time it takes from when a request was submitted until the first 
response is produced (assumption: beginning of execution), not final output.
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Example: FCFS (from IC Q)

Given From Gantt chart Calculation

Process 
ID

Arrival 
Time

Burst 
time

Begins Completion 
time

Turnaround 
time

Waiting 
time

P1 0 2 0 2 2-0=2 0

P2 1 3 2 5 5-1=4 2-1=1

P3 2 5 5 10 10-2=8 3

P4 3 4 10 14 14-3=11 7

P5 4 6 14 20 20-4=16 10

Av 41/5=8.2 21/5=4.2

Note: Processes arrive when they want to. They have to wait when CPU is busy.
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Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next 
CPU burst
– Use these lengths to schedule the process with the 

shortest time
• Reduction in waiting time for short process 

GREATER THAN  Increase in waiting time for long 
process

• SJF is optimal – gives minimum average waiting 
time for a given set of processes
– The difficulty is knowing the length of the next CPU 

request
– Estimate or could ask the user
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Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (      +       +      +      ) /   =

Pause for students to do the computation
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Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2
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Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to 
the recent bursts
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU 
bursts, using exponential averaging

• Commonly, α set to ½
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10 ,  3.

burst  CPUnext  for the  valuepredicted   2.
burst  CPU  of length  actual  1.
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Prediction of the Length of the Next CPU Burst

Blue points: guess
Black points: actual
α = 0.5

Ex:
0.5x6 +0.5x10 = 8



11

Examples of Exponential Averaging

• a =0
– tn+1 = tn
– Recent history does not count

• a =1
– tn+1 = a tn
– Only the actual last CPU burst counts

•
• If we expand the formula, substituting for  tn , we 

get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a )ja tn -j + …
+(1 - a )n +1 t0

• Since both a and (1 - a) are less than or equal to 
1, each successive term has less weight than its 
predecessor

Widely used for 
predicting stock-

market etc

( ) .1 1 nnn t taat -+=+
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Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and 
preemption to the analysis

ProcessA arri Arrival TimeT Burst Time
P1 0 8
P2 1 4 (will preempt because 4<7)

P3 2 9 (will not preempt)

P4 3 5
• Preemptive SJF Gantt Chart  

• Average waiting time for P1,P2,P3,P4
= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17

• Preemptive version called shortest-remaining-time-first

0 P1

1 P2 preempts P1

2 P3 doesn’t  P2

3 ..

4 ..

5 RT: P1=7, P3:9, 
P4:5. Thus ..

Preempted process gets into Ready Queue (not FCFS here)
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Priority Scheduling
• A priority number (integer) is associated with each 

process
• The CPU is allocated to the process with the highest 

priority (smallest integer º highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of 
predicted next CPU burst time

• Problem º Starvation – low priority processes may 
never execute
– Solution º Aging – as time progresses increase the priority of 

the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094!  J



14

Ex Priority Scheduling non-preemptive

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1 (highest)

P3 2 4
P4 1 5
P5 5 2

• P1,P2, P3, P4,P5  all arrive at time 0. 
• Priority scheduling Gantt Chart

• Average waiting time  for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec
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Round Robin (RR) with time quantum

• Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds.  After this, the process is 
preempted, added to the end of the ready queue.

• If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large Þ FIFO
– q small Þ q must be large with respect to context switch, 

otherwise overhead is too high  (overhead typically in 0.5% 
range)
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Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

• Arrive a time 0 in order P1, P2, P3: The Gantt chart is: 

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66 
units

• Typically, higher average turnaround than SJF, but better 
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 µsec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution
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Turnaround Time Varies With The Time Quantum

Rule of thumb: 80% of CPU bursts should be 
shorter than q

Ex: Round robin with quant q=7. 
All processes arrive at about the same time.
Turnaround time for P1,P2,P3,P4: 
6,9,10,17  av = 10.5
Similarly for q =1, ..6 (try at home)

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution
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Multilevel Queue
• Ready queue is partitioned into separate queues, 

e.g.:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm, e.g.:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground 

then from background).  Possibility of starvation.  Or
– Time slice – each queue gets a certain amount of CPU 

time which it can schedule amongst its processes; i.e.,     
80% to foreground in RR, 20% to background in FCFS 
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Multilevel Queue Scheduling

Real-time processes may have the highest priority.
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Multilevel Feedback Queue

• A process can move between the various queues; 
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by 
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will 

enter when that process needs service
– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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Example of Multilevel Feedback Queue

• Three queues: 
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served

FCFS
• When it gains CPU, job receives 8 

milliseconds
• If it does not finish in 8 milliseconds, 

job is moved to queue Q1

– At Q1 job is again served FCFS and receives 
16 additional milliseconds
• If it still does not complete, it is 

preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.  
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Completely fair scheduler Linux 2.6.23 

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist) 
• Variable time-slice based on number and priority of the tasks in 

the queue.
– Maximum execution time based on waiting processes (Q/n). 
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue; 
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher 
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
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Thread Scheduling

• Thread scheduling is similar
• Distinction between user-level and kernel-level threads
• When threads supported, threads scheduled, not processes

Scheduling competition
• Many-to-one and many-to-many models, thread library schedules 

user-level threads to run on LWP
– Known as process-contention scope (PCS) since scheduling competition is 

within the process
– Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is system-contention 
scope (SCS) – competition among all threads in system

• Pthread API allows both, but Linux and Mac OSX allows only SCS.

LWP layer between kernel threads and user threads in some older OSs



25

Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are 

available. 
• Assume Homogeneous processors within a 

multiprocessor
• Asymmetric multiprocessing – individual processors can 

be dedicated to specific tasks at design time
• Symmetric multiprocessing (SMP) – each processor is 

self-scheduling, 
– all processes in common ready queue, or
– each has its own private queue of ready processes

• Currently, most common
• Processor affinity – process has affinity for processor on 

which it is currently running because of info in cache
– soft affinity: try but no guarantee
– hard affinity  can specify processor sets
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NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity
Non-uniform memory access (NUMA), in which a CPU has 
faster access to some parts of main memory. 

CPU

fast access

memory

CPU

fast access
slow access

memory

computer
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Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for 
efficiency

• Load balancing attempts to keep workload 
evenly distributed 
– Push migration – periodic task checks load on 

each processor, and if found pushes task from 
overloaded CPU to other CPUs

– Pull migration – idle processors pulls waiting 
task from busy processor

– Combination of push/pull may be used.
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Multicore Processors

• Recent trend to place multiple processor 
cores on same physical chip

• Faster and consumes less power
• Multiple threads per core
– Concurrent
– Parallel: with hyper-threading hardware
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Real-Time CPU Scheduling
• Can present obvious challenges

– Soft real-time systems – no guarantee as to when critical 
real-time process will be scheduled

– Hard real-time systems – task must be serviced by its 
deadline

• For real-time scheduling, scheduler must support 
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to 
meet deadlines
– periodic ones require CPU at constant intervals

RTOS: real-time OS.  QNX in automotive, FreeRTOS etc.
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Virtualization and Scheduling

• Virtualization software schedules multiple 
guests OSs onto CPU(s)

• Each guest doing its own scheduling
– Not knowing it doesn’t own the CPUs
– Can affect time-of-day clocks in guests

• Virtual Machine Monitor has its own scheduler
• Various approaches have been used
– Workload aware, Guest OS cooperation, etc.
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Operating System Examples

• Solaris scheduling: 6 classes, Inverse relationship 
between priorities and time quantum

• Windows XP scheduling: 32 priority levels (real-
time, non-real-time levels)

• Linux scheduling schemes have continued to 
evolve.
– Linux Version 2.5: Two multilevel priority (“nice values”) 

queue sets  
– Linux Completely fair scheduler (CFS, 2007): 
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Algorithm Evaluation
• How to select CPU-scheduling algorithm for an OS?
• Determine criteria, then evaluate algorithms
• Deterministic modeling

– Type of analytic evaluation
– Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload
• Consider 5 processes arriving at time 0:
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Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time
• Simple and fast, but requires exact numbers for input, applies only 

to those inputs
– FCS is 28ms:

– Non-preemptive SFJ is 13ms:

– RR is 23ms:
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Probabilitistic Models
• Assume that the arrival of processes, and CPU 

and I/O bursts are random
– Repeat deterministic evaluation for many random 

cases and then average
• Approaches:
– Analytical: Queuing models 
– Simulation: simulate using realistic assumptions
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Queueing Models
• Describes the arrival of processes, and CPU 

and I/O bursts probabilistically
– Commonly exponential, and described by mean
– Computes average throughput, utilization, waiting 

time, etc
• Computer system described as network of 

servers, each with queue of waiting 
processes
– Knowing arrival rates and service rates
– Computes utilization, average queue length, 

average wait time, etc
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Little’s Formula for av Queue Length 
• n = average queue length
• W = average waiting time in queue
• λ = average arrival rate into queue
• Little’s law – in steady state, processes 

leaving queue must equal processes arriving, 
thus:

n = λ x W
– Valid for any scheduling algorithm and arrival 

distribution
• Example: average 7 processes arrive per sec, 

and 14 processes in queue, then average 
wait time per process W= n/λ = 14/7= 2 sec
Each process takes 1/ λ time to move one position.
Beginning to end delay W = n´(1/λ)
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Simulations
• Queueing models limited
• Simulations more versatile
– Programmed model of computer system
– Clock is a variable
– Gather statistics  indicating algorithm performance
– Data to drive simulation gathered via

• Random number generator according to probabilities
• Distributions defined mathematically or empirically
• Trace tapes record sequences of real events in real systems
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Evaluation of CPU Schedulers by Simulation

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q ! 14)

trace tape

simulation

SJF

simulation

RR (q ! 14)

• • •
CPU   10
I/O    213 
CPU   12 
I/O    112 
CPU     2 
I/O    147 
CPU 173

• • •
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Actual Implementation
! Even simulations have limited accuracy
! Just implement new scheduler and test in real systems

! High cost, high risk
! Environments vary

! Most flexible schedulers can be modified per-site or per-system
! Or APIs to modify priorities
! But again environments vary
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ICQ Thurs
Q1
i. Pthreads are a POSIX standard API for thread creation and 

synchronization.  True
ii. A Pthread library is always implemented in the user space. False 
Q2.
In a thread with deferred cancellation, cancellation only occurs 

when
A:	The	thread reaches the Cancellation	point
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Colorado State University
Yashwant K Malaiya

Synchronization

CS370 Operating Systems

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources
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Process Synchronization: Objectives
! Concept of process synchronization.
! The critical-section problem, whose solutions 

can be used to ensure the consistency of shared 
data

! Software and hardware solutions of the critical-
section problem

! Classical process-synchronization problems
! Tools that are used to solve process 

synchronization problems
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Process Synchronization

EW Dijkstra Go To Statement Considered Harmful
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Too Much Milk Example

Person A Person B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store. Look in fridge.  Out of milk.

12:40 Arrive at store. Leave for store

12:45 Buy milk. Arrive at store.

12:50 Arrive home, put milk away. Buy milk

12:55 Arrive home, put milk away.
Oh no!



45

Background
• Processes can execute concurrently

– May be interrupted at any time, partially completing 
execution

• Concurrent access to shared data may result in data 
inconsistency

• Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

• Illustration: we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. 
– have an integer counter that keeps track of the number of 

full buffers.  
– Initially, counter is set to 0. 
– It is incremented by the producer after it produces a new 

buffer 
– decremented by the consumer after it consumes a buffer.
Will it work without any problems?


