
1 1

Colorado State University
Yashwant K Malaiya
Fall 2021 Lecture 9

CPU Scheduling

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Questions from last time
• Scheduling time unit: often millisec (1/1000 of a sec)
• Estimation & probabilistic approaches in computing

optimal algorithms, cache, virtual memory, data centers etc. Based on field/recent data.

• Prediction of next burst
– Based on actual recent duration and predicted value (which is based on past actual

values)
– More recent data points get more weight (based on alpha).
– Initial prediction? Prior field data

• Shortest Job First (SJF) vs Preemptive SJF
– SJF is not preemptive
– Preemptive SJF (also termed Shortest remaining time first)
– Priority scheduling can also be preemptive or non-preemptive

3

Scheduling Criteria

• CPU utilization – keep the CPU as busy as
possible: Maximize

• Throughput – # of processes that complete their
entire execution per time unit: Maximize

• Turnaround time –time to execute a process
from submission to completion: Minimize

• Waiting time – total amount of time a process has
been waiting in the ready queue: Minimize

• Response time –time it takes from when a
request was submitted until the first response is
produced (assumption: beginning of execution), not final output
(for time-sharing environment): Minimize

4

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3 but
almost the same time 0.
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17

• Throughput: processes finished per unit time 3/30 = 0.1 per unit
• Turnaround time for P1, P2, P3 = 24, 27, 30 thus average = 8.2
• Response time for P1, P2, P3 = 0, 24, 27 assuming .. Thus the average

is ..

P P P1 2 3

0 24 3027

Turnaround time –time to execute a process from submission to completion.
Response time –time it takes from when a request was submitted until the first
response is produced (assumption: beginning of execution), not final output.

5 5

Example: FCFS (from IC Q)

Given From Gantt chart Calculation

Process
ID

Arrival
Time

Burst
time

Begins Completion
time

Turnaround
time

Waiting
time

P1 0 2 0 2 2-0=2 0

P2 1 3 2 5 5-1=4 2-1=1

P3 2 5 5 10 10-2=8 3

P4 3 4 10 14 14-3=11 7

P5 4 6 14 20 20-4=16 10

Av 41/5=8.2 21/5=4.2

Note: Processes arrive when they want to. They have to wait when CPU is busy.

6

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next
CPU burst
– Use these lengths to schedule the process with the

shortest time
• Reduction in waiting time for short process

GREATER THAN Increase in waiting time for long
process

• SJF is optimal – gives minimum average waiting
time for a given set of processes
– The difficulty is knowing the length of the next CPU

request
– Estimate or could ask the user

7

Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (+ + +) / =

Pause for students to do the computation

8

Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

9

Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to
the recent bursts
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU
bursts, using exponential averaging

• Commonly, α set to ½

: Define4.
10 , 3.

burst CPUnext for the valuepredicted 2.
burst CPU of length actual 1.

1

££
=

=

+

aa
t n

th
n nt

() .1 1 nnn t taat -+=+

10

Prediction of the Length of the Next CPU Burst

Blue points: guess
Black points: actual
α = 0.5

Ex:
0.5x6 +0.5x10 = 8

11

Examples of Exponential Averaging

• a =0
– tn+1 = tn
– Recent history does not count

• a =1
– tn+1 = a tn
– Only the actual last CPU burst counts

•
• If we expand the formula, substituting for tn , we

get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)ja tn -j + …
+(1 - a)n +1 t0

• Since both a and (1 - a) are less than or equal to
1, each successive term has less weight than its
predecessor

Widely used for
predicting stock-

market etc

() .1 1 nnn t taat -+=+

12

Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and
preemption to the analysis

ProcessA arri Arrival TimeT Burst Time
P1 0 8
P2 1 4 (will preempt because 4<7)

P3 2 9 (will not preempt)

P4 3 5
• Preemptive SJF Gantt Chart

• Average waiting time for P1,P2,P3,P4
= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17

• Preemptive version called shortest-remaining-time-first

0 P1

1 P2 preempts P1

2 P3 doesn’t P2

3 ..

4 ..

5 RT: P1=7, P3:9,
P4:5. Thus ..

Preempted process gets into Ready Queue (not FCFS here)

13

Priority Scheduling
• A priority number (integer) is associated with each

process
• The CPU is allocated to the process with the highest

priority (smallest integer º highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem º Starvation – low priority processes may
never execute
– Solution º Aging – as time progresses increase the priority of

the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094! J

14

Ex Priority Scheduling non-preemptive

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1 (highest)

P3 2 4
P4 1 5
P5 5 2

• P1,P2, P3, P4,P5 all arrive at time 0.
• Priority scheduling Gantt Chart

• Average waiting time for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec

15

Round Robin (RR) with time quantum

• Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds. After this, the process is
preempted, added to the end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large Þ FIFO
– q small Þ q must be large with respect to context switch,

otherwise overhead is too high (overhead typically in 0.5%
range)

16

Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

• Arrive a time 0 in order P1, P2, P3: The Gantt chart is:

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 µsec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution

18

Turnaround Time Varies With The Time Quantum

Rule of thumb: 80% of CPU bursts should be
shorter than q

Ex: Round robin with quant q=7.
All processes arrive at about the same time.
Turnaround time for P1,P2,P3,P4:
6,9,10,17 av = 10.5
Similarly for q =1, ..6 (try at home)

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution

19

Multilevel Queue
• Ready queue is partitioned into separate queues,

e.g.:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm, e.g.:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation. Or
– Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR, 20% to background in FCFS

20

Multilevel Queue Scheduling

Real-time processes may have the highest priority.

21

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will

enter when that process needs service
– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

22

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served

FCFS
• When it gains CPU, job receives 8

milliseconds
• If it does not finish in 8 milliseconds,

job is moved to queue Q1

– At Q1 job is again served FCFS and receives
16 additional milliseconds
• If it still does not complete, it is

preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

23

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist)
• Variable time-slice based on number and priority of the tasks in

the queue.
– Maximum execution time based on waiting processes (Q/n).
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue;
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

24

Thread Scheduling

• Thread scheduling is similar
• Distinction between user-level and kernel-level threads
• When threads supported, threads scheduled, not processes

Scheduling competition
• Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP
– Known as process-contention scope (PCS) since scheduling competition is

within the process
– Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is system-contention
scope (SCS) – competition among all threads in system

• Pthread API allows both, but Linux and Mac OSX allows only SCS.

LWP layer between kernel threads and user threads in some older OSs

25

Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are

available.
• Assume Homogeneous processors within a

multiprocessor
• Asymmetric multiprocessing – individual processors can

be dedicated to specific tasks at design time
• Symmetric multiprocessing (SMP) – each processor is

self-scheduling,
– all processes in common ready queue, or
– each has its own private queue of ready processes

• Currently, most common
• Processor affinity – process has affinity for processor on

which it is currently running because of info in cache
– soft affinity: try but no guarantee
– hard affinity can specify processor sets

26

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity
Non-uniform memory access (NUMA), in which a CPU has
faster access to some parts of main memory.

CPU

fast access

memory

CPU

fast access
slow access

memory

computer

27

Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for
efficiency

• Load balancing attempts to keep workload
evenly distributed
– Push migration – periodic task checks load on

each processor, and if found pushes task from
overloaded CPU to other CPUs

– Pull migration – idle processors pulls waiting
task from busy processor

– Combination of push/pull may be used.

28

Multicore Processors

• Recent trend to place multiple processor
cores on same physical chip

• Faster and consumes less power
• Multiple threads per core
– Concurrent
– Parallel: with hyper-threading hardware

29

Real-Time CPU Scheduling
• Can present obvious challenges

– Soft real-time systems – no guarantee as to when critical
real-time process will be scheduled

– Hard real-time systems – task must be serviced by its
deadline

• For real-time scheduling, scheduler must support
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to
meet deadlines
– periodic ones require CPU at constant intervals

RTOS: real-time OS. QNX in automotive, FreeRTOS etc.

30

Virtualization and Scheduling

• Virtualization software schedules multiple
guests OSs onto CPU(s)

• Each guest doing its own scheduling
– Not knowing it doesn’t own the CPUs
– Can affect time-of-day clocks in guests

• Virtual Machine Monitor has its own scheduler
• Various approaches have been used
– Workload aware, Guest OS cooperation, etc.

31

Operating System Examples

• Solaris scheduling: 6 classes, Inverse relationship
between priorities and time quantum

• Windows XP scheduling: 32 priority levels (real-
time, non-real-time levels)

• Linux scheduling schemes have continued to
evolve.
– Linux Version 2.5: Two multilevel priority (“nice values”)

queue sets
– Linux Completely fair scheduler (CFS, 2007):

32

Algorithm Evaluation
• How to select CPU-scheduling algorithm for an OS?
• Determine criteria, then evaluate algorithms
• Deterministic modeling

– Type of analytic evaluation
– Takes a particular predetermined workload and defines the

performance of each algorithm for that workload
• Consider 5 processes arriving at time 0:

33

Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time
• Simple and fast, but requires exact numbers for input, applies only

to those inputs
– FCS is 28ms:

– Non-preemptive SFJ is 13ms:

– RR is 23ms:

34

Probabilitistic Models
• Assume that the arrival of processes, and CPU

and I/O bursts are random
– Repeat deterministic evaluation for many random

cases and then average
• Approaches:
– Analytical: Queuing models
– Simulation: simulate using realistic assumptions

35

Queueing Models
• Describes the arrival of processes, and CPU

and I/O bursts probabilistically
– Commonly exponential, and described by mean
– Computes average throughput, utilization, waiting

time, etc
• Computer system described as network of

servers, each with queue of waiting
processes
– Knowing arrival rates and service rates
– Computes utilization, average queue length,

average wait time, etc

36

Little’s Formula for av Queue Length
• n = average queue length
• W = average waiting time in queue
• λ = average arrival rate into queue
• Little’s law – in steady state, processes

leaving queue must equal processes arriving,
thus:

n = λ x W
– Valid for any scheduling algorithm and arrival

distribution
• Example: average 7 processes arrive per sec,

and 14 processes in queue, then average
wait time per process W= n/λ = 14/7= 2 sec
Each process takes 1/ λ time to move one position.
Beginning to end delay W = n´(1/λ)

37

Simulations
• Queueing models limited
• Simulations more versatile
– Programmed model of computer system
– Clock is a variable
– Gather statistics indicating algorithm performance
– Data to drive simulation gathered via

• Random number generator according to probabilities
• Distributions defined mathematically or empirically
• Trace tapes record sequences of real events in real systems

38

Evaluation of CPU Schedulers by Simulation

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q ! 14)

trace tape

simulation

SJF

simulation

RR (q ! 14)

• • •
CPU 10
I/O 213
CPU 12
I/O 112
CPU 2
I/O 147
CPU 173

• • •

39

Actual Implementation
! Even simulations have limited accuracy
! Just implement new scheduler and test in real systems

! High cost, high risk
! Environments vary

! Most flexible schedulers can be modified per-site or per-system
! Or APIs to modify priorities
! But again environments vary

40

ICQ Thurs
Q1
i. Pthreads are a POSIX standard API for thread creation and

synchronization. True
ii. A Pthread library is always implemented in the user space. False
Q2.
In a thread with deferred cancellation, cancellation only occurs

when
A:	The	thread reaches the Cancellation	point

41 41

Colorado State University
Yashwant K Malaiya

Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

42 42

Process Synchronization: Objectives
! Concept of process synchronization.
! The critical-section problem, whose solutions

can be used to ensure the consistency of shared
data

! Software and hardware solutions of the critical-
section problem

! Classical process-synchronization problems
! Tools that are used to solve process

synchronization problems

43

Process Synchronization

EW Dijkstra Go To Statement Considered Harmful

44

Too Much Milk Example

Person A Person B

12:30 Look in fridge. Out of milk.

12:35 Leave for store. Look in fridge. Out of milk.

12:40 Arrive at store. Leave for store

12:45 Buy milk. Arrive at store.

12:50 Arrive home, put milk away. Buy milk

12:55 Arrive home, put milk away.
Oh no!

45

Background
• Processes can execute concurrently

– May be interrupted at any time, partially completing
execution

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

• Illustration: we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.
– have an integer counter that keeps track of the number of

full buffers.
– Initially, counter is set to 0.
– It is incremented by the producer after it produces a new

buffer
– decremented by the consumer after it consumes a buffer.
Will it work without any problems?

