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FAQ

• Shortest remaining time first (Preemptive SJF)
– Need to track the remaining time for all processes

• Round Robin
– Need to track the position of the processes in the Ready 

Queue
– Also need to track the remaining time needed
– Illustration on youtube
– Animation CPU Scheduling Algorithm Visualization

• Time quantum- How to decide? 
– Rule of thumb: 80% of CPU bursts should be shorter than q

Disclaimer: I have not verified the accuracy of the on-line sources.

https://www.youtube.com/watch?v=3N2t9_6Co3U
https://codepen.io/faso/pen/zqWGQW
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Round Robin Scheduling
Time	1:	P2	arrives,	gets	in	RQ.
Time	2:	P2	starts.

P3	arrives,	gets	in	RQ,	P1	gets	in	RQ.		RQ={P1,	P3}
Time	3:P2	executing.

P4	arrives,	gets	in	RQ,	RQ={P4,	P1,	P3}
Time	4:	P3	starts.

P5	arrives,	gets	in	RQ,	P2	gets	in	RQ.	RQ={P2,	P5,	P4,P1}
Time	5:	no	change
Time	6:	P1	starts.

P6	arrives,	gets	in	RQ,	P3	done.	RQ={P6,	P2,	P5,	P4}
Time	8:	P4	starts

RQ={P6,	P2,	P5}
Time	9:	P4	done,	P5	starts

RQ={P6,	P2}
T1me	11:	P2	starts.

RQ={P5,	P6}	…..

PID Arrival 
Time

Burst 
Time

P1 0 4

P2 1 5

P3 2 2

P4 3 1

P5 4 6

P6 6 3
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Schedulers

• Scheduling schemes have continued to evolve with 
continuing research. A comparison.

• Multilevel Feedback Queue Details at ARPACI-DUSSEAU

• Linux Completely fair scheduler (Con Kolivas, Anaesthetist): 
– Variable time-slice based on number and priority of the tasks 

in the queue.
• Maximum execution time based on waiting processes (Q/n). 

– Processes kept in a red-black binary tree with scheduling 
complexity of O(log N)

– Process with lowest weighted spent execution (virtual run 
time) time is picked next. Weighted by priority (“niceness”). 

https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
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Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are 

available. 
• Assume Homogeneous processors within a 

multiprocessor
• Asymmetric multiprocessing – individual processors can 

be dedicated to specific tasks at design time
• Symmetric multiprocessing (SMP) – each processor is 

self-scheduling, 
– all processes in common ready queue, or
– each has its own private queue of ready processes

• Currently, most common
• Processor affinity – process has affinity for processor on 

which it is currently running because of info in cache
– soft affinity: try but no guarantee
– hard affinity  can specify processor sets
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Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for 
efficiency

• Load balancing attempts to keep workload 
evenly distributed 
– Push migration – periodic task checks load on 

each processor, and if found pushes task from 
overloaded CPU to other CPUs

– Pull migration – idle processors pulls waiting 
task from busy processor

– Combination of push/pull may be used.
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Real-Time CPU Scheduling
• Can present obvious challenges

– Soft real-time systems – no guarantee as to when critical 
real-time process will be scheduled

– Hard real-time systems – task must be serviced by its 
deadline

• For real-time scheduling, scheduler must support 
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to 
meet deadlines
– periodic ones require CPU at constant intervals

RTOS: real-time OS.  QNX in automotive, FreeRTOS etc.
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Virtualization and Scheduling

• Virtualization software schedules multiple 
guests OSs onto CPU(s)

• Each guest doing its own scheduling
– Not knowing it doesn’t own the CPUs
– Can affect time-of-day clocks in guests

• Virtual Machine Monitor has its own scheduler
• Various approaches have been used
– Workload aware, Guest OS cooperation, etc.
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Algorithm Evaluation
• How to select CPU-scheduling algorithm for an OS?
• Determine criteria, then evaluate algorithms
• Deterministic modeling

– Type of analytic evaluation
– Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload
• Consider 5 processes arriving at time 0:
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Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time
• Simple and fast, but requires exact numbers for input, applies only 

to those inputs
– FCS is 28ms:

– Non-preemptive SFJ is 13ms:

– RR is 23ms:
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Probabilitistic Models
• Assume that the arrival of processes, and CPU 

and I/O bursts are random
– Repeat deterministic evaluation for many random 

cases and then average
• Approaches:
– Analytical: Queuing models 
– Simulation: simulate using realistic assumptions
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Queueing Models
• Describes the arrival of processes, and CPU 

and I/O bursts probabilistically mathematically
– Commonly exponential, and described by mean
– Computes average throughput, utilization, waiting 

time, etc
• Computer system described as network of 

servers, each with queue of waiting 
processes
– Knowing arrival rates and service rates
– Computes utilization, average queue length, 

average wait time, etc

Queueing Theory
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Simulations
• Queueing models limited
• Simulations more versatile
– Programmed model of computer system
– Clock is a variable
– Gather statistics  indicating algorithm performance
– Data to drive simulation gathered via

• Random number generator according to probabilities
• Distributions defined mathematically or empirically
• Trace tapes record sequences of real events in real systems

– Illustration

https://staff.um.edu.mt/jskl1/simweb/sq1/sq1.html
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Evaluation of CPU Schedulers by Simulation

actual
process

execution

performance
statistics
for FCFS

simulation

FCFS

performance
statistics
for SJF

performance
statistics

for RR (q ! 14)

trace tape

simulation

SJF

simulation

RR (q ! 14)

• • •
CPU   10
I/O    213 
CPU   12 
I/O    112 
CPU     2 
I/O    147 
CPU 173

• • •
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Actual Implementation
! Even simulations have limited accuracy
! Just implement new scheduler and test in real systems

! High cost, high risk
! Environments vary

! Considerations
! Most flexible schedulers can be modified per-site or per-

system
! Or APIs to modify priorities
! Environments can vary
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Process Synchronization: Objectives
! Concept of process synchronization.
! The critical-section problem, whose solutions 

can be used to ensure the consistency of shared 
data

! Software and hardware solutions of the critical-
section problem

! Classical process-synchronization problems
! Tools that are used to solve process 

synchronization problems
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Process Synchronization

EW Dijkstra Go To Statement Considered Harmful

https://stackoverflow.com/questions/46586/goto-still-considered-harmful
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Process Synchronization
Overview
• We synchronization is needed
• Critical section: access controlled to permit just one 

process
– How the critical section be implemented
– Mutex locks and semaphores

• Classic synchronization problems
• Will a solution cause a deadlock?
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Too Much Milk Example

Person A Person B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store. Look in fridge.  Out of milk.

12:40 Arrive at store. Leave for store

12:45 Buy milk. Arrive at store.

12:50 Arrive home, put milk away. Buy milk

12:55 Arrive home, put milk away.
Oh no!
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Background
• Processes can execute concurrently

– May be interrupted at any time, partially completing 
execution

• Concurrent access to shared data may result in data 
inconsistency

• Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes

• Illustration: we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. 
– have an integer counter that keeps track of the number of 

full buffers.  
– Initially, counter is set to 0. 
– It is incremented by the producer after it produces a new 

buffer 
– decremented by the consumer after it consumes a buffer.
Will it work without any problems?
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Consumer-producer problem 

Producer
while (true) {

/* produce an item*/ 

while (counter == BUFFER_SIZE) ; 
/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 
counter++;

} 

Consumer
while (true) {

while (counter == 0); 
/* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZ
counter--;

/* consume the item in 
next consumed */ 

} 

24

They run “concurrently” (or in parallel), and are subject to context switches 
at unpredictable times. 

In, out: indices of empty and filled items in the buffer.
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Race Condition

They run concurrently, and are subject to context switches at unpredictable times. 

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6}
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}

counter++ could be compiled as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be compiled as

register2 = counter
register2 = register2 - 1
counter = register2

Overwrites!
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Critical Section Problem
We saw race condition between counter ++ and counter –

Solution to the “race condition” problem: critical section
• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing 
file, etc

– When one process in critical section, no other may be in its critical 
section

• Critical section problem is to design protocol to solve this
• Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable
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Process Synchronization: Outline

! Critical-section problem to ensure the consistency of 
shared data

! Software and hardware solutions of the critical-section 
problem
! Peterson’s solution
! Atomic instructions
! Mutex locks and semaphores

! Classical process-synchronization problems
! Bounded buffer, Readers Writers, Dining Philosophers

! Another approach: Monitors
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General structure: Critical section

do { 

entry section

critical section 
exit section

remainder section

} while (true); 

Request permission 
to enter

Housekeeping to let 
other processes to 

enter

A process is prohibited from entering the critical section while another 
process is in it. 
Multiple processes are trying to enter the critical section concurrently by 
executing the same code.
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Solution to Critical-Section Problem
A good solution to the critical-section problem should have these 

attributes

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted

� Assume that each process executes at a nonzero speed 
� No assumption concerning relative speed of the n processes



31

Peterson’s Solution
• Good algorithmic  description of solving the problem
• Two process solution only
• Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted
• The two processes share two variables:
– int turn; 
– Boolean flag[2]
– The variable turn indicates whose turn it is to enter the 

critical section
– The flag array is used to indicate if a process is ready to 

enter the critical section. flag[i] = true implies that 
process Pi is ready to enter!
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Algorithm for Process Pi

do { 

flag[i] = true; 
turn = j; 
while (flag[j] && turn = = j);  /*Wait*/

critical section
flag[i] = false; 

remainder section 
} while (true); 

• The variable turn indicates whose turn it is to enter the critical 
section

• The flag array is used to indicate if a process is ready to enter the 
critical section. flag[i] = true implies that process Pi is ready!

• Note: Entry section- Critical section-Exist section
• These algorithms assume 2 or more processes are trying to get in the 

critical section.

Being 
nice!

For process  Pi, 
Pj runs the same code 

concurrently
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Peterson’s Solution (Cont.)
Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved
Pi enters CS only if:
either flag[j] = false or turn = i

2.   Progress requirement is satisfied
3.   Bounded-waiting requirement is met. 

A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is not 

assured.
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Synchronization: Hardware Support

• Many systems provide hardware support for 
implementing the critical section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Modern machines provide special atomic 
hardware instructions

• Atomic = non-interruptible
– test memory word and set value
– swap contents of two memory words
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Solution 1:  using test_and_set()

• Shared Boolean variable lock, initialized to FALSE
• Solution:

do {
while (test_and_set(&lock)) ; /* do nothing */

/* critical section */ 
…..

lock = false; 
/* remainder section */ 

…  ..

} while (true);

To break out:
Return value of 
TestAndSet should be 

FALSE

Lock TRUE: locked, Lock FALSE: not locked.
If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

test_and_set(&lock) returns the lock
value and then sets it to True.
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Solution 2: Swap: Hardware implementation

Remember this C code? 

void Swap(boolean *a, boolean *b ) { 
boolean temp = *a; 
*a = *b; 
*b = temp; 

}
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Using Swap (concurrently executed by both)

do { 
key = TRUE;
while (key == TRUE) { 

Swap(&lock, &key)       
}

critical section

lock = FALSE;

remainder section
} while (TRUE); 

Lock is a SHARED variable.  
Key is a variable local to the process. 

Lock == false when no process is in 
critical section.

Cannot enter critical section UNLESS 
lock == FALSE by other process or initially

If two Swap() are executed 
simultaneously, they will be executed 
sequentially in some arbitrary order
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Swap()

Process 0 Process 1Lock
Key = TRUE
Swap (  )  
Key ==FALSE, enter

Critical section

Lock  = FALSE

Key = TRUE
Swap (  )
Key == TRUE, wait

Busy waiting

Swap (  ),  Key ==False

Critical section

Lock  = FALSE

Locked by Process 0

Locked by Process 1

Lock = FALSE 

Lock = TRUE 

Note: I created this to visualize the mechanism. It is not in the book. - Yashwant
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Bounded-waiting Mutual Exclusion with test_and_set

For process i: 

do {
waiting[i] = true;
key = true;
while (waiting[i] && key) 

key = test_and_set(&lock); 
waiting[i] = false; 
/* critical section */ 

j = (i + 1) % n; 
while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 
if (j == i) 

lock = false; 
else 

waiting[j] = false; 
/* remainder section */ 

} while (true); 

Shared Data	structures	initialized	to FALSE	
• boolean waiting[n]; Pr n wants to enter
• boolean lock; 

The entry section for process i : 
• First process to execute TestAndSet will find key == 

false ; ENTER critical section, 
• EVERYONE else must wait 

The exit section for process i: 
Attempts to finding a suitable waiting process j (while 
loop) and enable it, 
or if there is no suitable process, make lock FALSE.
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Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements
• Mutual Exclusion:  The first process to execute TestAndSet(lock) 

when lock is false, will set lock to true so no other process can 
enter the CS.

• Progress: When a process i exits the CS, it either sets lock to 
false, or waiting[i] to false (allowing j to get in) , allowing the 
next process to proceed.

• Bounded Waiting: When a process exits the CS, it examines all 
the other processes in the waiting array in a circular order.  Any 
process waiting for CS will have to wait at most n-1 turns


