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FAQ
Notes: we are using the terms in a generic way. There are specific implementations for 
POSIX and Java. 

• Atomic instructions: Hardware (Assembly/Machine), not high level 
like C

• Mutex (0 or 1): for mutual exclusion (lock). Owned by the locking process 
which acquires/releases by 
– wait( )  get the resource or join the waiting list
– signal( ) release the resource, and wake up a process

• Semaphores (any integer value): general, may be used for 
counting resources/waiting processes. Shared. Applicable to different types of 
synchronization problems.
– 0:  no waiting threads
– Positive: no waiting threads, a wait operation would not put the invoking thread in 

queue. 
– Negative: number of processes/threads waiting

• Semaphore implementation
– Hardware/software implementations to ensure wait() and signal( ) atomic.

• Semaphore usage: see POSIX/Java documentation. 

http://faculty.cs.niu.edu/~hutchins/csci480/semaphor.htm
https://www.mkyong.com/java/java-thread-mutex-and-semaphore-example/
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Project

• See Document: Schedule/Proj Proposal or Canvas/Assignments

• Choices: Research (topics provided) or development (IoT). Some 
research/original thinking required for either.

• Deadlines: subject to revision.
– D1. Team composition and idea proposal, Fri 10/01/2021

– D2. Progress report, Thurs 11/04/2021

– D3. Slides and final reports, Thurs 12/02/2021

– D4. Presentations/demos 12/06-12/08 as arranged
– D5: Peer Reviews due 12/11/2021 Sat

https://www.cs.colostate.edu/~cs370/Fall21/assignments/TermPaperF19.pdf
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What does the Mars parachute say?
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Classical Problems of Synchronization

• Classical problems 
– Bounded-Buffer Problem
– Readers and Writers Problem
– Dining-Philosophers Problem

• Bounded buffer Review
– n buffers, each can hold one item
– A binary semaphore: mutex 

• Provides mutual exclusion for accesses to buffer pool 
• Initialized to 1 

– Two counting semaphores 
• empty: Number of empty slots available, Initialized to n 
• full: Number of filled slots available n, Initialized to 0 
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Readers-Writers Problem

• A data set is shared among a number of concurrent 
processes
– Readers – only read the data set; they do not perform any 

updates
– Writers   – can both read and write

• Problem 
– allow multiple readers to read at the same time
– Only one single writer can access the shared data at the 

same time. No readers permitted when writer is accessing 
the data.

• Data set, integer read_count (number of readers)
– Semaphore rw_mutex (writing), Semaphore  mutex (for 

read_count)
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Readers-Writers Problem
• The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)    if the first reader process

wait(rw_mutex);    wait for writer to finish
signal(mutex); 

...
/* reading is performed */ 
... 

wait(mutex);
read count--;
if (read_count == 0)   if the only reader finishes

signal(rw_mutex);  writer can get in
signal(mutex); 

} while (true);

First reader needs to wait for the writer to finish. 
If other  readers are already reading, a new reader
Process just goes in.
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Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating
• Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl
– Need both to eat, 
– then release both when done

• Each chopstick is a semaphore
– Grab by executing wait ( )
– Release by executing signal ( )

• Shared data 
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes
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Dining-Philosophers Problem Algorithm: Simple solution?

• The structure of Philosopher i:
do { 

wait (chopstick[i] );
wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

• What is the problem with this algorithm?
– If all of them pick up the the left chopstick first  -

Deadlock
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Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling
– Allow at most 4 philosophers to be sitting 

simultaneously at  the table (with the same 5 forks).
– Allow a philosopher to pick up  the forks only if 

both are available (picking must be done in a critical 
section.

– Use an asymmetric solution  -- an odd-numbered  
philosopher picks  up first the left chopstick and 
then the right chopstick. Even-numbered  
philosopher picks  up first the right chopstick and 
then the left chopstick. 
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Problems with Semaphores

• Incorrect use of semaphore operations:

– Omitting  of wait (mutex) 
• Violation of mutual exclusion

– or signal (mutex)
• Deadlock!

• Solution: 
– Monitors: a higher level implementation of 

synchronization
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Monitors
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Monitors

Monitor: A high-level abstraction that provides a 
convenient and effective mechanism for process 
synchronization
• Abstract data type, internal variables only accessible by 

code within the procedure
• Only one process may be active within the monitor at a 

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
- for entry
- for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C
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Monitors
• Only one process may be active in the monitor. 
• A generic monitor construct is used here. Implementation 

varies by language.

monitor monitor-name
{
// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}
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Preliminary Schematic view of a Monitor

Only one process/thread in 
the Monitor

• Provides an easy way to 
achieve mutual exclusion

But … we also need a way for 
processes to block
when they cannot proceed.

• Refinement next …

Shows 4 processes waiting in the queue.
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Condition Variables

Some actions need some conditions to go ahead. 
The condition construct

• condition x, y;
• Two operations are allowed on a condition 

variable:
– x.wait() – a process that invokes the operation 

is suspended until x.signal() 
– x.signal() – resumes one of processes (if any)

that invoked x.wait()
• If no x.wait() on the condition variable, then it has no 

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is 

associated.



18

Difference between the signal() in semaphores and monitors 

• Condition variables in Monitors: Not persistent 
– If a signal is performed and no waiting threads? 
• Signal is simply ignored 

– During subsequent wait operations 
• Thread (or process) blocks     

• Compare with semaphores 
– Signal increments semaphore value even if there 

are no waiting threads 
• Future wait operations would immediately 

succeed! 
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Monitor with Condition Variables
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Condition Variables Choices

• If process P invokes x.signal(), and process Q is 
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed, 

then P must wait
• Options include

– Signal and wait – P waits until Q either leaves the monitor or 
it waits for another condition

– Signal and continue – Q waits until P either leaves the 
monitor or it  waits for another condition

– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75) 

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java
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Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING &&   state[(i+1)%5] != EATING 

• condition self[5]
– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think
DiningPhilosophers.pickup(i);
eat
DiningPhilosophers.putdown(i);
think
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Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i Process 
(i+1)%5

Process 
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait
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The pickup() and putdown()   operations

monitor DiningPhilosophers
{ 

enum { THINKING, HUNGRY, EATING} state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);   //below
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

} void test (int i) { 
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

Suspend self if 
unable  to acquire 

chopstick

Check to see if person 
on left or right can use 

the chopstick

Eat only if HUNGRY 
and Person on Left 

AND Right
are not eating

Signal a process that 
was suspended while 

trying to eat
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• Philosopher i can starve if eating periods of
philosophers on left and right overlap

• Possible solution
– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is 

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

Possibility of starvation
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Monitor Implementation of Mutual Exclusion

For each monitor  
• Semaphore mutex initialized to 1  
• Process must execute 
– wait(mutex)  :  Before entering the monitor 
– signal(mutex):  Before leaving the monitor 
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Resuming Processes within a Monitor

• If several processes queued on condition 
x, and x.signal() is executed, which should 
be resumed?

• FCFS frequently not adequate 
• conditional-wait construct of the form 

x.wait(c)
– Where c is priority number
– Process with lowest number (highest priority) 

is scheduled next
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• Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  plans to 
use the resource

R.acquire(t);
...

access the resource;
...

R.release;

• Where R is an instance of  type ResourceAllocator
• A monitor based solution next.

Single Resource allocation 
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A Monitor to Allocate Single Resource
monitor ResourceAllocator
{ 

boolean busy; 
condition x; 

void acquire(int time) { 
if (busy) 

x.wait(time);  
busy = TRUE; 

} 

void release() { 
busy = FALSE; 
x.signal(); 

} 
initialization code() {
busy = FALSE; 

}
}

Sleep, Time used 
to prioritize 

waiting 
processes

Wakes up 
one of the 
processes
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Java Synchronization
• For simple synchronization,  Java provides the synchronized keyword

– synchronizing methods
public synchronized void increment( ) { c++; } 
– synchronizing blocks

synchronized(this) {
lastName = name;
nameCount++;

}
• wait() and notify() allows a thread to  wait for an event. A call to 

notifyAll() allows all threads that are on wait() with the same lock to 
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll() 
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the 
package java.concurrent.locks provides additional capabilities.
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Java Synchronization

Each object automatically has a monitor (mutex) associated with it
• When a method is synchronized, the runtime must obtain the lock on the object's monitor before 

execution of that method begins (and must release the lock before control returns to the calling 
code)

wait() and notify() allows a thread to  wait for an event. 
• wait( ): Causes the current thread to wait until another thread invokes the notify() method or 

the notifyAll() method for this object.
• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting 

on this object, one of them is chosen to be awakened.
• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will 

run in sequence according to priority.

https://www.baeldung.com/java-wait-notify
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Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
throws InterruptedException {

setState(i, State.HUNGRY);
test(i);
while (state[i] != State.EATING) {

this.wait();
// Recheck condition in loop,
// since we might have been notified
// when we were still hungry

}
}

private synchronized void test(int i) {
if (state[left(i)] != State.EATING &&

state[right(i)] != State.EATING &&
state[i] == State.HUNGRY)

{
setState(i, State.EATING);
// Wake up all waiting threads
this.notifyAll();

}
}

public synchronized void putdown(int i) {
setState(i, State.THINKING);
test(right(i));
test(left(i));

}
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Synchronization Examples
• Solaris
• Windows
• Linux
• Pthreads
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Solaris Synchronization
• Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and 
multiprocessing

• Uses adaptive mutexes for efficiency when protecting 
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code 

need access to data
• Uses turnstiles to order the list of threads waiting to 

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread 
the highest of the priorities of the threads in its turnstile
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Windows Synchronization

• Uses interrupt masks to protect access to global 
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land 
which may act mutexes, semaphores, events, 
and timers
– Events

• An event acts much like a condition variable
– Timers notify one or more thread when time expired
– Dispatcher objects either signaled-state (object 

available) or non-signaled state (thread will block)
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Linux Synchronization
• Linux:

– Prior to kernel Version 2.6, disables interrupts to 
implement short critical sections

– Version 2.6 and later, fully preemptive
• Linux provides:

– Semaphores
– atomic operations on integers
– spinlocks
– reader-writer versions of both

• On single-cpu system, spinlocks replaced by 
enabling and disabling kernel preemption
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Pthreads Synchronization

• Pthreads API is OS-independent
• It provides:
– mutex locks
– condition variable

• Non-portable extensions include:
– read-write locks
– spinlocks
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Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages
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• A memory transaction is a sequence of 
read-write operations to memory that are 
performed atomically without the use of 
locks.

void update(){
atomic{
/* modify shared data*/
}

}

May be implemented by hardware or software.

Transactional Memory
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• OpenMP is a set of compiler directives and 
API that support parallel programming.

void update(int value)
{

#pragma omp critical
{
count += value

}
}

The code contained within the #pragma omp critical  
directive is treated as a critical section and performed 
atomically.

OpenMP
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Chapter 8:  Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks
– Deadlock Prevention
– Deadlock Avoidance resource-allocation

– Deadlock Detection 
– Recovery from Deadlock 
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Deadlock

• Can you give a real life example of a deadlock?
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A Kansas Law

• Early 20th century Kansas Law
– “When two trains approach each other at a 

crossing, both shall come to a full stop and neither 
shall start up again until the other has gone” 

• Story of the two silly goats: Aesop 6th cent BCE?

https://www.youtube.com/watch?v=7D59nSKzwsE
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A contemporary example
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System Model

• System consists of resources
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.
• Each process utilizes a resource as follows:
– request 
– use 
– release
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Example of a Resource Allocation Graph

If the graph contains no 
cycles, then no process in 
the system is deadlocked. 
If the graph does contain a 
cycle, then a deadlock 
may exist. 

Does a deadlock exist 
here?

P3 will eventually be done 
with R3, letting P2 use it.

Thus P2 will be eventually 
done, releasing R1. …

P1 holds an instance of 
R2, and is requesting R1 ..


