
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L16
Deadlocks, Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Where we are: Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks

– Deadlock Prevention
– Deadlock Avoidance resource-allocation

– Deadlock Detection
– Recovery from Deadlock

• Livelock
Help Session this Wed: Discussion of Midterm.
TAs available using Microsoft Teams, Piazza, email

3

FAQ

• How do critical systems like (those in an aircraft)
deal with the issue of deadlocks?
– specialized real-time operating systems

• Safe state is definitely not deadlocked.
• Banker’s algorithm: When a process requests a resource, it

may have to wait (resource request algorithm), and request not
granted if the resulting system state is unsafe (safety algorithm)
– Need [i,j] = Max[i,j] – Allocation [i,j]

• Work: currently available resources of each type
• Midterm: raw and adjusted scores.

4

Example A: Banker’s Algorithm
• Is it a safe state?
• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria
Process Max Allocation Need

type A B C A B C A B C
available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1
P1 run to completion. Available becomes [3 3 2]+[2 0 0] = [5 3 2]
P3 run to completion. Available becomes [5 3 2]+[2 1 1] = [7 4 3]
P4 run to completion. Available becomes [7 4 3]+[0 0 2] = [7 4 5]
P2 run to completion. Available becomes [7 4 5]+[3 0 2] = [10 4 7]
P0 run to completion. Available becomes [10 4 7]+[0 1 0] = [10 5 7]
Hence state above is safe.

Why did we
choose P1?

How did we get to this state?

”Work”

5

Deadlock Detection

• Allow system to enter deadlock state
• Detection algorithm

– Single instance of each resource:
• wait-for graph

– Multiple instances:
• detection algorithm (based on Banker’s algorithm)

• Recovery scheme

6

Example of Detection Algorithm
• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)
• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =

true for all i. No deadlock
Process Allocation Request

type A B C A B C
available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After available

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6

7

Recovery from Deadlock: Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle
is eliminated

– Selecting a victim – minimize cost

– Rollback – return to some safe state, restart process for
that state

– Starvation – same process may always be picked as victim,
include number of rollbacks in cost factor

8

Welcome to CS370 Second Half

• Topics: Memory, Storage, File System,
Virtualization

• Class rules: See Syllabus
– Class, Canvas, Teams
– participation
– Final

• Sec 001, local 801: in class.
• Sec 801 non-local: on-line.
• SDC: Sec 001, Sec 801: must be taken at SDC

– Project, deadlines, Plagiarism

http://www.cs.colostate.edu/~cs370/Spring21/syllabus.html

9

Some OS History Lessons 1
• History in Unix-like OSs

https://en.wikipedia.org/wiki/Unix-like

10

Some OS History Lessons 2
• 1974: CP/M Intel 8080, Gary Kildall, Digital

Research
– 8-bit, min 16 kB RAM, floppy

• 1980: 86-DOS, Intel 8086, Time Paterson,
Seattle Computer Products
– Inspired by CP/M?

• 1981: PC DOS, Bill Gates, Microsoft
– 86-DOS licensed for $25,000, hired Paterson

• 1985: Windows, Bill Gates, Microsoft
– GUI inspired by MAC? Xerox PARC Star?

Gary Kildall net worth $1.9 Million at death

Tim Paterson Net Worth: $250,000

11 11

Colorado State University
Yashwant K Malaiya

Spring 2021

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

12 12

Colorado State University
Yashwant K Malaiya

Spring 2021

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

13 13

Chapter 8: Main Memory

Objectives:
• Organizing memory for multiprogramming environment

• Partitioned vs separate address spaces
• Memory-management techniques

• Virtual vs physical addresses
• Chunks

• segmentation
• Paging: page tables, caching (“TLBs”)

• Examples: the Intel (old/new) and ARM architectures

14

What we want

• Memory capacities have been increasing
– But programs are getting bigger faster
– Parkinson’s Law*: Programs expand to fill the

memory available to hold
• What we would like

– Memory that is
• infinitely large, infinitely fast
• Non-volatile
• Inexpensive too

• Unfortunately, no such memory exists as of
now

*work expands so as to fill the time available for its completion. 1955

15

Background
• Program must be brought (from disk) into memory and run

as a process
• Main memory and registers are only storage CPU can

access directly
• Memory unit only sees a stream of

– addresses + read requests, or
– address + data and write requests

• n-bit address: address space of size 2n bytes.
– Ex: 32 bits: addresses 0 to (232 -1) bytes
– Addressable unit is always 1 byte.

• Access times:
– Register access in one CPU clock (or less)
– Main memory can take many cycles, causing a stall
– Cache sits between main memory and CPU registers making main memory

appear much faster

• Protection of memory required to ensure correct operation

210=1,024 ≈ K
220 = 1,048,576 ≈ M
230 ≈ G

16

Hierarchy
Main memory and registers are only
storage CPU can access directly
access

Register access in one CPU clock (or
less).
Main memory can take many cycles,
causing a stall.

Cache sits between main memory
and CPU registers making main
memory appear much faster

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch 10

Ch 9

Ch 11,13,14,16: Disk, file system Cache: CS470

17

Memory Technology somewhat inaccurte

18

Protection: Making sure each process has separate memory spaces

• OS must be protected from accesses by user
processes

• User processes must be protected from one
another
– Determine range of legal addresses for each process
– Ensure that process can access only those

• Approaches:
– Partitioning address space (early system)

– Separate address spaces (modern practice)

19

Partitioning: Base and Limit Registers

• Base and Limit for a process
– Base: Smallest legal physical address
– Limit: Size of the range of physical

address
• A pair of base and limit registers

define the logical address space for a
process

• CPU must check every memory
access generated in user mode to be
sure it is between base and limit for
that user

• Base: Smallest legal physical address
• Limit: Size of the range of physical address
• Eg: Base = 300040 and limit = 120900
• Legal: 300040 to (300040 + 120900 -1) =

420939 Addresses: decimal, hex/binary

20

Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

Legal addresses: Base address to Base address + limit -1

21

Multistep Processing of a User Program

22

Address Binding Questions
• Programs on disk, ready to be brought into memory to execute form

an input queue
– Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at
0000
– How can it not be?

• Addresses represented in different ways at different stages of a
program’s life
– Source code addresses are symbolic
– Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”
– Linker or loader will bind relocatable addresses to absolute

addresses
• i.e., 74014

– Each binding maps one address space to another

23

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three
different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

– Load time: Must generate relocatable code if
memory location is not known at compile time

– Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another
• Need hardware support for address maps (e.g., base

and limit registers)

25

Separate Address Spaces Modern

• Each process has its own private address
space.
– Logical address space is the set of all

logical addresses used by a process.
• However, the physical memory has just

one address space.
– Physical address space is the set of all

physical addresses
• Need to map one to the other.

26

Logical vs. Physical Address Space

• The concept of a logical address space that
is bound to a separate physical address
space is central to proper memory
management
– Logical address – generated by the CPU; also

referred to as virtual address
– Physical address – address seen by the

memory unit
• Logical address space is the set of all

logical addresses generated by a program
• Physical address space is the set of all

physical addresses

27

Memory-Management Unit (MMU)
• Hardware device that at run time maps virtual to

physical address
– Many methods possible, we will see them soon

• Consider simple scheme where the value in the
relocation register is added to every address
generated by a user process at the time it is
sent to memory
– Base register now called relocation register
– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses;
it never sees the real physical addresses
– Execution-time binding occurs when reference is

made to location in memory
– Logical address bound to physical addresses

28

Dynamic relocation using a relocation register

29

Loading vs Linking
• Loading

– Load executable into memory prior to
execution

• Linking
– Takes some smaller executables and joins

them together as a single larger
executable.

30

Linking: Static vs Dynamic
• Static linking – system libraries and program code

combined by the loader into the binary image
– Every program includes library: wastes memory

• Dynamic linking –linking postponed until execution
time
– Operating system checks if routine is in processes’ memory

address

31

Dynamic Linking
• Dynamic linking –linking postponed until execution

time
• Small piece of code, stub, used to locate the

appropriate memory-resident library routine
• Stub replaces itself with the address of the routine,

and executes the routine
• Operating system checks if routine is in processes’

memory address
– If not in address space, add to address space

• Dynamic linking is particularly useful for
– shared libraries

32

Dynamic loading of routines

• Routine is not loaded until it is called
• Better memory-space utilization; unused routine is never loaded
• All routines kept on disk in relocatable load format
• Useful when large amounts of code are needed to handle

infrequently occurring cases
• OS can help by providing libraries to implement dynamic loading
• Static library

• Linux. .a (archive)
• Windows .lib (Library)

• Dynamic Library
• Linux .so (Shared object)
• Windows .dll (Dynamic link library)

33

Swapping a process
• A process can be swapped temporarily out of

memory to a backing store, and then brought
back into memory for continued execution
– Total physical memory space of processes

can exceed physical memory
• Backing store – fast disk large enough to

accommodate copies of all memory images for
all users; must provide direct access to these
memory images

• Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped

• System maintains a ready queue of ready-to-
run processes which have memory images on
disk

34

Schematic View of Swapping

Do we really need to keep the entire process
in the main memory? Stay tuned.

35

Context Switch Time including Swapping

• If next processes to be put on CPU is not in
memory, need to swap out a process and
swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with

transfer rate of 50MB/sec
– Swap out time of 100MB/50MB/s = 2 seconds
– Plus swap in of same sized process
– Total context switch swapping component time

of 4 seconds + some latency

• Can reduce if reduce size of memory
swapped – by knowing how much memory
really being used by a process

36

Context Switch Time and Swapping (Cont.)

• Standard swapping not used in modern
operating systems
– But modified version common

• Swap only when free memory extremely low

37

Memory Allocation

38

Memory Allocation Approaches
• Contiguous allocation: entire memory for

a program in a single contiguous memory
block. Find where a program will “fit”. earliest
approach

• Segmentation: program divided into
logically divided “segments” such as main
program, functions, stack etc.
– Need table to track segments.

• Paging: program divided into fixed size
“pages”, each placed in a fixed size
“frame”.
– Need table to track pages.

39

Contiguous Allocation
• Main memory must support both OS and

user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is one early method
• Main memory usually into two partitions:

– Resident operating system, usually held in low
memory with interrupt vectors

– User processes then held in high memory
– Each process contained in single contiguous

section of memory

40

Contiguous Allocation (Cont.)
• Registers used to protect user processes

from each other, and from changing
operating-system code and data
– Relocation (Base) register contains value of

smallest physical address
– Limit register contains range of logical

addresses – each logical address must be less
than the limit register

• MMU maps logical address dynamically

41

Hardware Support for Relocation and Limit Registers

MMU maps logical address dynamically
Physical address = relocation reg + valid logical address

42

Multiple-partition allocation
• Multiple-partition allocation

– Degree of multiprogramming limited by number of partitions
– Variable-partition sizes for efficiency (sized to a given process’ needs)
– Hole – block of available memory; holes of various size are scattered

throughout memory
– When a process arrives, it is allocated memory from a hole large enough to

accommodate it
– Process exiting frees its partition, adjacent free partitions combined
– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

43

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough
• Best-fit: Allocate the smallest hole that is big enough; must

search entire list, unless ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire
list
– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

Simulation studies:
• First-fit and best-fit better than worst-fit in terms of speed and storage

utilization
• Best fit is slower than first fit . Surprisingly, it also results in more

wasted memory than first fit
• Tends to fill up memory with tiny, useless holes

44

Fragmentation
• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory
interspersed among allocated regions

• Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule

45

Fragmentation (Cont.)

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory

together in one large block
– Compaction is possible only if relocation is dynamic,

and is done at execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

48

Paging vs Segmentations

Segmentation: program divided into logically divided
“segments” such as main program, function, stack etc.

• Need table to track segments.
• Term “segmentation fault occurs”: improper

attempt to access a memory location

Paging: program divided into fixed size “pages”, each
placed in a fixed size “frame”.

• Need table to track pages.
• No external fragmentation
• Increasingly more common

49

Paging vs Segmentations

50

Pages

• Pages and frames
– Addresses: page number, offset

• Page tables: mapping from page # to frame #
– TLB: page table caching

• Memory protection and sharing
• Multilevel page tables

