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Where we are:  Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks

– Deadlock Prevention
– Deadlock Avoidance resource-allocation

– Deadlock Detection 
– Recovery from Deadlock 

• Livelock
Help Session this Wed:  Discussion of Midterm.
TAs available using Microsoft Teams, Piazza, email
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FAQ

• How do critical systems like (those in an aircraft) 
deal with the issue of deadlocks?
– specialized real-time operating systems

• Safe state is definitely not deadlocked.
• Banker’s algorithm: When a process requests a resource,  it 

may have to wait (resource request algorithm),  and request not 
granted if the resulting system state is unsafe  (safety algorithm)
– Need [i,j] = Max[i,j] – Allocation [i,j]

• Work: currently available resources of each type
• Midterm: raw and adjusted scores. 
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Example A: Banker’s Algorithm
• Is it a safe state?
• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria 
Process Max Allocation Need

type A B C A B C A B C
available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1
P1  run to completion. Available becomes  [3 3 2]+[2 0 0] = [5 3 2]
P3  run to completion. Available becomes  [5 3 2]+[2 1 1] = [7 4 3]
P4  run to completion. Available becomes  [7 4 3]+[0 0 2] = [7 4 5]  
P2 run to completion. Available becomes  [7 4 5]+[3 0 2] = [10 4 7] 
P0 run to completion. Available becomes  [10 4 7]+[0 1 0] = [10 5 7]  
Hence state above is safe.

Why did we 
choose P1?

How did we get to this state?

”Work”
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Deadlock Detection

• Allow system to enter deadlock state 
• Detection algorithm

– Single instance of each resource: 
• wait-for graph

– Multiple instances: 
• detection algorithm (based on Banker’s algorithm)

• Recovery scheme
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Example of Detection Algorithm
• Five processes P0 through P4; three resource types 

A (7 instances), B (2 instances), and C (6 instances)
• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = 

true for all i.  No deadlock
Process Allocation Request

type A B C A B C
available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After available

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6
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Recovery from Deadlock:  Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle 
is eliminated

– Selecting a victim – minimize cost

– Rollback – return to some safe state, restart process for 
that state

– Starvation – same process may always be picked as victim, 
include number of rollbacks in cost factor



8

Welcome to CS370 Second Half

• Topics: Memory, Storage, File System, 
Virtualization

• Class rules: See Syllabus
– Class, Canvas, Teams
– participation 
– Final 

• Sec 001, local 801: in class. 
• Sec 801 non-local: on-line.
• SDC: Sec 001, Sec 801: must be taken at SDC

– Project, deadlines, Plagiarism

http://www.cs.colostate.edu/~cs370/Spring21/syllabus.html
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Some OS History Lessons 1
• History in Unix-like OSs

https://en.wikipedia.org/wiki/Unix-like
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Some OS History Lessons 2
• 1974: CP/M Intel 8080, Gary Kildall, Digital 

Research 
– 8-bit, min 16 kB RAM, floppy

• 1980: 86-DOS, Intel 8086, Time Paterson, 
Seattle Computer Products
– Inspired by CP/M? 

• 1981: PC DOS, Bill Gates, Microsoft 
– 86-DOS licensed for $25,000, hired Paterson

• 1985: Windows, Bill Gates, Microsoft
– GUI inspired by MAC? Xerox PARC Star? 

Gary Kildall net worth $1.9 Million at death

Tim Paterson Net Worth: $250,000



11 11

Colorado State University
Yashwant K Malaiya

Spring 2021

CS370 Operating Systems

Main Memory

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources



12 12

Colorado State University
Yashwant K Malaiya

Spring 2021

CS370 Operating Systems

Main Memory

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources



13 13

Chapter 8:  Main Memory

Objectives:  
• Organizing memory for multiprogramming environment

• Partitioned vs separate address spaces
• Memory-management techniques

• Virtual vs physical addresses
• Chunks

• segmentation
• Paging: page tables, caching (“TLBs”)

• Examples: the Intel (old/new) and ARM architectures
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What we want

• Memory capacities have been increasing
– But programs are getting bigger faster
– Parkinson’s Law*: Programs expand to fill the 

memory available to hold
• What we would like

– Memory that is
• infinitely large, infinitely fast
• Non-volatile
• Inexpensive too

• Unfortunately, no such memory exists as of 
now

*work expands so as to fill the time available for its completion. 1955
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Background
• Program must be brought (from disk)  into memory and run 

as a process 
• Main memory and registers are only storage CPU can 

access directly
• Memory unit only sees a stream of 

– addresses + read requests, or 
– address + data and write requests

• n-bit address:   address space of size 2n bytes.
– Ex: 32 bits: addresses 0 to (232 -1) bytes
– Addressable unit is always 1 byte.

• Access times:
– Register access in one CPU clock (or less)
– Main memory can take many cycles, causing a stall
– Cache sits between main memory and CPU registers making main memory 

appear much faster 

• Protection of memory required to ensure correct operation

210=1,024 ≈ K
220 =  1,048,576 ≈ M
230 ≈ G
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Hierarchy
Main memory and registers are only 
storage CPU can access directly 
access

Register access in one CPU clock (or 
less).
Main memory can take many cycles, 
causing a stall.

Cache sits between main memory 
and CPU registers making main 
memory appear much faster 

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch 10

Ch 9

Ch 11,13,14,16: Disk, file system      Cache: CS470   
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Memory Technology somewhat inaccurte
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Protection: Making sure each process has separate memory spaces

• OS must be protected from accesses by user 
processes

• User processes must be protected from one 
another
– Determine range of legal addresses for each process
– Ensure that process can access only those

• Approaches: 
– Partitioning address space (early system)

– Separate address spaces (modern practice)
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Partitioning: Base and Limit Registers

• Base and Limit for a process
– Base: Smallest legal physical address 
– Limit: Size of the range of physical 

address
• A pair of base and limit registers

define the logical address space for a 
process

• CPU must check every memory 
access generated in user mode to be 
sure it is between base and limit for 
that user

• Base: Smallest legal physical address
• Limit: Size of the range of physical address
• Eg: Base = 300040 and limit = 120900
• Legal: 300040 to  (300040 + 120900 -1) = 

420939 Addresses: decimal, hex/binary
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Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

Legal addresses: Base address to Base address + limit -1
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Multistep Processing of a User Program 



22

Address Binding Questions
• Programs on disk, ready to be brought into memory to execute form 

an input queue
– Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 
0000 
– How can it not be?

• Addresses represented in different ways at different stages of a 
program’s life
– Source code addresses are symbolic
– Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”
– Linker or loader will bind relocatable addresses to absolute 

addresses
• i.e., 74014

– Each binding maps one address space to another
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Binding of Instructions and Data to Memory

• Address binding of instructions and data to 
memory addresses can happen at three 
different stages
– Compile time:  If memory location known a priori, 

absolute code can be generated; must recompile 
code if starting location changes

– Load time:  Must generate relocatable code if 
memory location is not known at compile time

– Execution time:  Binding delayed until run time if 
the process can be moved during its execution 
from one memory segment to another
• Need hardware support for address maps (e.g., base 

and limit registers)
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Separate Address Spaces Modern

• Each process has its own private address 
space.
– Logical address space is the set of all 

logical addresses used by a process.
• However, the physical memory has just 

one address space.
– Physical address space is the set of all 

physical addresses
• Need to map one to the other.
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Logical vs. Physical Address Space

• The concept of a logical address space that 
is bound to a separate physical address 
space is central to proper memory 
management
– Logical address – generated by the CPU; also 

referred to as virtual address
– Physical address – address seen by the 

memory unit
• Logical address space is the set of all 

logical addresses generated by a program
• Physical address space is the set of all 

physical addresses
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Memory-Management Unit (MMU)
• Hardware device that at run time maps virtual to 

physical address
– Many methods possible, we will see them soon

• Consider simple scheme where the value in the 
relocation register is added to every address 
generated by a user process at the time it is 
sent to memory
– Base register now called relocation register
– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; 
it never sees the real physical addresses
– Execution-time binding occurs when reference is 

made to location in memory
– Logical address bound to physical addresses
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Dynamic relocation using a relocation register
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Loading vs Linking
• Loading 

– Load executable into memory prior to 
execution 

• Linking 
– Takes some smaller executables and joins 

them together as a single larger 
executable. 
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Linking: Static vs Dynamic
• Static linking – system libraries and program code 

combined by the loader into the binary image
– Every program includes library: wastes memory

• Dynamic linking –linking postponed until execution 
time
– Operating system checks if routine is in processes’ memory 

address
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Dynamic Linking
• Dynamic linking –linking postponed until execution 

time
• Small piece of code, stub, used to locate the 

appropriate memory-resident library routine
• Stub replaces itself with the address of the routine, 

and executes the routine
• Operating system checks if routine is in processes’

memory address
– If not in address space, add to address space

• Dynamic linking is particularly useful for 
– shared libraries
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Dynamic loading of routines

• Routine is not loaded until it is called
• Better memory-space utilization; unused routine is never loaded
• All routines kept on disk in relocatable load format
• Useful when large amounts of code are needed to handle 

infrequently occurring cases
• OS can help by providing libraries to implement dynamic loading
• Static library

• Linux. .a (archive)
• Windows .lib (Library)

• Dynamic Library
• Linux .so (Shared object)
• Windows .dll (Dynamic link library)
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Swapping a process
• A process can be swapped temporarily out of 

memory to a backing store, and then brought 
back into memory for continued execution
– Total physical memory space of processes 

can exceed physical memory
• Backing store – fast disk large enough to 

accommodate copies of all memory images for 
all users; must provide direct access to these 
memory images

• Major part of swap time is transfer time; total 
transfer time is directly proportional to the 
amount of memory swapped

• System maintains a ready queue of ready-to-
run processes which have memory images on 
disk
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Schematic View of Swapping

Do we really need to keep the entire process 
in the main memory?  Stay tuned.
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Context Switch Time including Swapping

• If next processes to be put on CPU is not in 
memory, need to swap out a process and 
swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with 

transfer rate of 50MB/sec
– Swap out time of 100MB/50MB/s = 2 seconds
– Plus swap in of same sized process
– Total context switch swapping component time 

of 4 seconds + some latency

• Can reduce if reduce size of memory 
swapped – by knowing how much memory 
really being used by a process



36

Context Switch Time and Swapping (Cont.)

• Standard swapping not used in modern 
operating systems
– But modified version common

• Swap only when free memory extremely low
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Memory Allocation
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Memory Allocation Approaches
• Contiguous allocation: entire memory for 

a program in a single contiguous memory 
block. Find where a program will “fit”. earliest 
approach

• Segmentation: program divided into 
logically divided “segments” such as main 
program, functions, stack etc. 
– Need table to track segments.

• Paging: program divided into fixed size 
“pages”, each placed in a fixed size 
“frame”. 
– Need table to track pages.
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Contiguous Allocation
• Main memory must support both OS and 

user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is one early method
• Main memory usually into two partitions:

– Resident operating system, usually held in low 
memory with interrupt vectors

– User processes then held in high memory
– Each process contained in single contiguous 

section of memory
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Contiguous Allocation (Cont.)
• Registers used to protect user processes 

from each other, and from changing 
operating-system code and data
– Relocation (Base) register contains value of 

smallest physical address
– Limit register contains range of logical 

addresses – each logical address must be less 
than the limit register 

• MMU maps logical address dynamically
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Hardware Support for Relocation and Limit Registers

MMU maps logical address dynamically
Physical address = relocation reg + valid logical address
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Multiple-partition allocation
• Multiple-partition allocation

– Degree of multiprogramming limited by number of partitions
– Variable-partition sizes for efficiency (sized to a given process’ needs)
– Hole – block of available memory; holes of various size are scattered 

throughout memory
– When a process arrives, it is allocated memory from a hole large enough to 

accommodate it
– Process exiting frees its partition, adjacent free partitions combined
– Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big enough
• Best-fit:  Allocate the smallest hole that is big enough; must 

search entire list, unless ordered by size  
– Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search entire 
list  
– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

Simulation studies:
• First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization
• Best fit is slower than first fit .  Surprisingly, it also results in more 

wasted memory than first fit
• Tends to fill up memory with tiny, useless holes 
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Fragmentation
• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory
interspersed among allocated regions

• Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory 

together in one large block
– Compaction is possible only if relocation is dynamic, 

and is done at execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers
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Paging vs Segmentations

Segmentation: program divided into logically divided 
“segments” such as main program, function, stack etc. 

• Need table to track segments.
• Term “segmentation fault occurs”: improper 

attempt to access a memory location

Paging: program divided into fixed size “pages”, each 
placed in a fixed size “frame”. 

• Need table to track pages.
• No external fragmentation
• Increasingly more common
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Paging vs Segmentations
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Pages

• Pages and frames
– Addresses: page number, offset

• Page tables: mapping from page # to frame #
– TLB: page table caching

• Memory protection and sharing
• Multilevel page tables


