
1 1

Colorado State University
Yashwant K Malaiya

Spring 21 L18
Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ

• Is there is specific formula for calculating the physical
address from the logical address? Page number to frame number lookup

• Page (block of info) vs Frame (block of physical memory)

• Each process has its own page table? Can there be a
conflict in sharing physical memory? No, unless..

• Can the page table dynamically change?
• Where is the page table? Memory, with a part cached in TLB

• How to find the page table in memory? Page table base
register

• Where is the TLB ? On the same chip as CPU.

3

FAQ

4

Paging Hardware With TLB

TLB: uses content addressable memory.

TLB Miss: page table access may be
done using hardware or software

Page number p to frame number f

5

Effective Access Time
• Associative Lookup = e time units
• Hit ratio = a
• Effective Access Time (EAT): probability

weighted
EAT = (100 + e) a + (200+e)(1 – a)

• Ex:
Consider a = 80%, e = negligible for TLB
search, 100ns for memory access
– EAT = 100x0.80 + 200x0.20 = 120ns

6

Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not
in the process’s
address space.

7

Shared Pages Example: 3 Processes

How are “pages” shared?
Include in address space
of both processes.

ed1, ed2, ed3
(3, 4, 6) shared

9

Overheads in paging: Page table and internal fragmentation

Optimal Page Size:
page table size vs internal fragmentation tradeoff

• Average process size = s
• Page size = p
• Size of each entry in page table = e

– Pages per process = s/p
– se/p: Total page table space for average process

• Total Overhead = Page table overhead +
Internal fragmentation loss
= se/p + p/2

10

Optimal Page size: Page table and internal fragmentation

• Total Overhead = se/p + p/2
• Optimal: Obtain derivative of overhead with

respect to p, equate to 0
-se/p2 +1⁄2 = 0

• i.e. p2 =2se or p = (2se)0.5

Assume s = 128KB and e=8 bytes per entry
• Optimal page size = 1448 bytes

– In practice we will never use 1448 bytes
– Instead, either 1K or 2K would be used

• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier

11

Page Table Size
Memory structures for paging can get huge using
straight-forward methods
• Consider a 32-bit logical address space as on

recent processors 64-bit on 64-bit processors

– Page size of 4 KB (212) entries
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte

220 1M mebibyte

230 1G gigibyte

240 1T tebibyte

12

Issues with large page tables

• Cannot allocate a large page table
contiguously in memory

• Solution:
– Divide the page table into smaller pieces
– Page the page-table

• Hierarchical Paging

13

Hierarchical Page Tables

• Break up the logical address
space into multiple page tables

• A simple technique is a two-level
page table

• We then page the page table

P1: indexes the outer page table
P2: page table: maps to frame

14

Two-Level Page-Table Scheme

P1: indexes the outer page table
P2: page table: maps to frame

212 entries

212 pages,
each with 210 entries

15

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page

size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is
further divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2is the displacement within the page of the inner page
table

• Known as forward-mapped page table

16

Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212
entry: page of the page table

• Often only some of all possible 212 Page
tables needed (each of size 210)

17

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

18

64-bit Logical Address Space
! Even two-level paging scheme not sufficient
! If page size is 4 KB (212)

! Then page table has 252 entries
! If two level scheme, inner page tables could be 210 4-byte

entries
! Address would look like

! Outer page table has 242 entries or 244 bytes
! One solution is to add a 2nd outer page table

!But in the following example the 2nd outer page table is still 234 bytes
in size

4And possibly 4 memory access to get to one physical memory
location!

Full 64 bit physical memories not common yet

19

Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!

20

Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the
same location

• Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element

• Virtual page numbers are compared in this chain
searching for a match
– If a match is found, the corresponding physical frame is

extracted
• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such
as 16) rather than 1

– Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

21

Hashed Page Table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped page frame
(3) a pointer to the next element

22

Inverted Page Table
• Rather than each process having

a page table and keeping track of
all possible logical pages, track
all physical pages
– One entry for each real page of

memory (“frame”)
– Entry consists of the virtual

address of the page stored in
that real memory location, with
information about the process
that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory

23

Inverted Page Table

• Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference
occurs

• But how to implement shared memory?
– One mapping of a virtual address to the

shared physical address. Not possible.

Used in IA-64 ..

25

Segmentation Approach
Memory-management scheme that supports
user view of memory
• A program is a collection of segments

– A segment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)
– Segment-table length register (STLR)

• segments vary in length, can very dynamically
• Segments may be paged
• Used for x86-32 bit
• Origin of term “segmentation fault”

26 26

What we expect in future

What	are	you	guys	looking	forward	to?	Some	answers.

• We	will	be	on	Mars
• That	humans	will	land	on	Mars
• Further	space	travel	and	exploration
• Spaceships
• Expect	to	see	colonies	on	Mars	(and	maybe	work	
started	on	a	link/elevator	to	the	moon)

• It	was	moon	in	our	time	-1969
• Elon	Musk	– 2026?		7	months.

27

Examples

• Intel IA-32 (x386-Pentium)
• x86-64 (AMD, Intel)
• ARM (Acorn > ARM Ltd > Softbank > Nvidea)

28

Logical to Physical Address Translation in IA-32

29

Intel IA-32 Paging Architecture

30

Intel IA-32 Page Address Extensions

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

! 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space
! Paging went to a 3-level scheme
! Top two bits refer to a page directory pointer table
! Page-directory and page-table entries moved to 64-bits in size
! Net effect is increasing address space by increasing frame address bits.

31

Intel x86-64
! Intel x86 architecture based on AMD 64 bit architecture
! 64 bits is ginormous (> 16 exabytes)
! In practice only implement 48 bit addressing or perhaps 52

" Page sizes of 4 KB, 2 MB, 1 GB
" Four levels of paging hierarchy

! Can also use PageAddressExtensions so virtual addresses are 48
bits and physical addresses are 52 bits

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

Exabyte: 10246 bytes

32

Example: ARM Architecture
" Dominant mobile platform chip

(Apple iOS and Google Android
devices for example)

" Modern, energy efficient, 32-bit
CPU

" 4 KB and 16 KB pages
" 1 MB and 16 MB pages (termed

sections)
" One-level paging for sections, two-

level for smaller pages
" Two levels of TLBs

! Outer level has two micro
TLBs (one data, one
instruction)

! Inner is single main TLB
! First inner is checked, on

miss outers are checked,
and on miss page table
walk performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

33 33

Colorado State University
Yashwant K Malaiya

Spring 2021

CS370 Operating Systems

Virtual Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

35 35

Virtual Memory: Objectives
! A virtual memory system
! Demand paging, page-

replacement algorithms,
allocation of page frames to
processes

! Threshing, the working-set model
! Memory-mapped files and shared

memory and
! Kernel memory allocation

36

Fritz-Rudolf Güntsch: Virtual Memory

Fritz-Rudolf Güntsch (1925-2012) at the
Technische Universität Berlin in 1956 in
his doctoral thesis, Logical Design of a
Digital Computer with Multiple
Asynchronous Rotating Drums and
Automatic High Speed Memory
Operation.

First used in Atlas, Manchester, 1962

PCs: Windows 95

When was Win 95
introduced?

37

Background

• Code needs to be in memory to execute, but entire
program rarely used
– Error code, unusual routines, large data structures

• Entire program code not needed at the same time
• Consider ability to execute partially-loaded

program
– Program no longer constrained by limits of physical

memory
– Each program uses less memory while running -> more

programs run at the same time
• Increased CPU utilization and throughput with no increase in

response time or turnaround time
– Less I/O needed to load or swap programs into memory

-> each user program runs faster

38

Background (Cont.)

• Virtual memory – separation of user logical
memory from physical memory

• Virtual address space – logical view of how
process views memory
– Usually start at address 0, contiguous addresses until end of

space
– Meanwhile, physical memory organized in page frames
– MMU must map logical to physical

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation That is the

new idea

39

Virtual Memory That is Larger Than Physical Memory

40

Virtual-address Space: advantages
! Usually design logical address space for

stack to start at Max logical address and
grow “down” while heap grows “up”
! Maximizes address space use
! Unused address space between the

two is hole
4 No physical memory needed until heap

or stack grows to a given new page
! Enables sparse address spaces with holes

left for growth, dynamically linked libraries,
etc.

! System libraries shared via mapping into
virtual address space

! Shared memory by mapping pages read-
write into virtual address space

! Pages can be shared during fork(),
speeding process creation

41

Shared Library Using Virtual Memory

42

Demand Paging
• Could bring entire process into memory

at load time
• Or bring a page into memory only when it

is needed: Demand paging
– Less I/O needed, no unnecessary I/O
– Less memory needed
– Faster response
– More users

• Similar to paging system with swapping
• Page is needed Þ reference to it

– invalid reference Þ abort
– not-in-memory Þ bring to memory

• “Lazy swapper” – never swaps a page
into memory unless page will be needed
– Swapper that deals with pages is a

pager

43

Demand paging: Basic Concepts
• Demand paging: pager brings in only those pages

into memory what are needed
• How to determine that set of pages?

– Need new MMU functionality to implement demand
paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from

storage
• Without changing program behavior
• Without programmer needing to change code

44

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v Þ in-memory – memory resident, i Þ not-in-memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table
entry is i Þ page fault

45

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk

46

Page Fault

• If there is a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference Þ abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

47

Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:
• Contiguous allocation. Problem: external fragmentation
• Non-contiguous, but entire process in memory: Problem:

Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

• Demand Paging: Problem: page faults
• How to minimize page faults?

48

Steps in Handling a Page Fault

