CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Spring 21 L18
Main Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

FAQ

Is there is specific formula for calculating the physical
address from the |Ogica| addreSS? Page number to frame number lookup

Page (block of info) VS Fra me (block of physical memory)

Each process has its own page table? Can there be a
conflict in sharing physical memory? o, untess.

Can the page table dynamically change?
Where is the page table? mMemory, with a part cached in TLB
How to find the page table in memory? page table base

register

Where |S the TLB ? On the same chip as CPU.

Colorado State University

Tulia EvANS
@ b0rk

FAQ

page table

(in 32 bt

memorvy

every process has

its own memaor
SPO«CQ

Ox aeff3 000

each addrg.ss maps
to a ‘real addcess
in Pkysfcal RAM

process] QK 28eo

processes have
O‘“Pqﬁe +able” in RAM
thot stores ol
eir mappings
Ox 12345 000 -> Ox aeq2s.-

T need +o acces
Ox ae 923 456

address
234454

1S Ox qq

ot that prosess Ox 23£44000 —0x 12345 -
address it} { for me it Ox aef'p3000im>‘dv the mappings ace
ASaYs “cat™ (says ™ dos n: S alid ¥ ;JSUA”Y YkB blocks
— Cocess 4B is +h Usi
oess 1 [process A 3 2 Ox 3942 004 ok ;L“pZSZ?'SM‘ e
Q\Ie(\/* memary Aaccess when you suwitch some pages dont
Uses the page table processes.. . map to a physical

RAM address

j'h’\ 3 onng
access
(.

EEPNQ v
BAD AopresT > [cpU

g Se_c, mentation 'f'quH' =

Colorado State University

Paging Hardware With TLB

Page number p to frame number f

logical

address
CPU —-| P | d |

page frame
number number
'Eé TLB hit physical
E ' address
CrTab—
TLB
p
TLB miss
> f
= physical
TLB: uses content addressable memory. memory
page table

TLB Miss: page table access may be
done using hardware or software

Colorado State University

Effective Access Time

* Associative Lookup = ¢ time units
« Hit ratio = o
- Effective Access Time (EAT): probability
weighted
EAT = (100 + €) a + (200+€)(1 — o)
* EX:

Consider o = 80%, € = negligible for TLB
search, 100ns for memory access

— EAT =100x0.80 + 200x0.20 = 120ns

Colorado State University

Valid (v) or Invalid (i) Bit In A Page Table

0
1
2| pageO
00000 frame number valid-invalid bit
page O \ / 3| page 1
O [E=Nn
page 1 1 B 4| page 2
2(4|v
age 2 5
2 3 (Rl
page 3 4/8|v 6
5 [ESHIRY
page 4 6|0 i 7| page3
10,468 page 5 7 e 8| page 4
12,287 page table
9| page 5
“invalid” : page is not .
in the process’s page n
address space.
) Colorado State University

ed 1

ed?

ed 3

data 1

process P,

ed 1

ed?

ed 3

data 3

process P,

= || |w

page table
for P,

N ||| W

page table
for P,

ed1

ed?2

ed 3

data 2

process P,

~N| o~ Ww

page table
for P,

10

11

data 1

data 3

ed 1

ed?

ed 3

data 2

Shared PageS Example: 3 pProcesses

How are “pages” shared?
Include in address space
of both processes.

edl, ed2, ed3
(3, 4, 6) shared

Colorado State University

Overheads in paging: Page table and internal fragmentation

Optimal Page Size:
page table size vs internal fragmentation tradeoff
* Average processsize=s
* Pagesize=p
e Size of each entry in page table=e
— Pages per process = s/p
— se/p: Total page table space for average process

e Total Overhead = Page table overhead +
Internal fragmentation loss

=se/p +p/2 ‘

Colorado State University

Optimal Page size: Page table and internal fragmentation

e Total Overhead =se/p + p/2

e Optimal: Obtain derivative of overhead with
respect to p, equate to 0

-se/p2 +1/2=0
* i.e. p?=2se orp=(2se)’>
Assume s = 128KB and e=8 bytes per entry
* Optimal page size = 1448 bytes
— In practice we will never use 1448 bytes

— Instead, either 1K or 2K would be used

 Why? Pages sizes are in powers of 2 i.e. 2X
* Deriving offsets and page numbers is also easier

Colorado State University

10

Page Table Size

Memory structures for paging can get huge using
straight-forward methods

« Consider a 32-bit logical address space as on
recent ProCesSSOrS 64-bit on 64-bit processors
— Page size of 4 KB (2'?) entries
— Page table would have 1 million entries (232 / 212)
— If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
« Don’t want to allocate that contiguously in main memory
210 1024 or 1 kibibyte
220 1M mebibyte
230 1G gigibyte
240 1T tebibyte

Colorado State University

11

Issues with large page tables

* Cannot allocate a large page table
contiguously in memory

e Solution:

— Divide the page table into smaller pieces
— Page the page-table
 Hierarchical Paging

Colorado State University

12

Hierarchical Page Tables

« Break up the logical address
space into multiple page tables

« A simple technigue is a two-level

page table
« We then page the page table ==
Oxtord
page number page offset 15/6\1{1(0;1[1%[7
o | 2| d /
12 10 10 “ ,’
(
(

P1: indexes the outer page table
P2: page table: maps to frame

Colorado State University

13

Two-Level Page-Table Scheme

/ 100
<

\ = /
~/ 100 BB
708 ~— |
: 708
outer page \N 929 iy 900
table o
page number page offset .
212 entries —
Py P, d SLE
page of 929
12 10 10 page table
page table
memory
P1: indexes the outer page table 212 pages,
P2: page table: maps to frame each with 210 entries

Colorado State University

14

15

Two-Level Paging Example

A logical address (on 32-bit machine with 1K page
size) is divided into:

— a page number consisting of 22 bits
— a page offset consisting of 10 bits

Since the page table is paged, the page number is
furtherdiv%e%l Into: Pag Pag

— a 12-bit page number
— a 10-bit page offset

Thus, a logical address is as follows:
page number page offset

P; P, d

12 10 10
where Cf_), IS an Index INto the outer page table, and p,
IS

j[s é?e placement within the page of the inner page
able

Known as forward-mapped page table

Colorado State University

Two-Level Paging Example

* Alogical address is as follows:

page number page offset
P P d
12 10 10

« One Outer page table: size 212
entry: page of the page table

« Often only some of all possible 212 Page
tables needed (each of size 210

Colorado State University

16

Hierarchical Paging

logical address
Pi | P2 | d

.

:

=

outer page d
table {

page of
page table

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

Colorado State University

17

64-bit Logical Address Space

B Even two-level paging scheme not sufficient
B If page size is 4 KB (21%)
@ Then page table has 2°? entries
@ If two level scheme, inner page tables could be 20 4-byte

entries
@ Address would look like outerpage inner page | page offset
P, Ps d
42 10 12

@ Outer page table has 2% entries or 2%* bytes

@ One solution is to add a 2" outer page table
@ But in the following example the 2" outer page table is still 234 bytes
in size
» And possibly 4 memory access to get to one physical memory
location!

18 Full 64 bit physical memories not common yet ColoradoStateUniversity

Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

e Outer page table has 242 entries!
* Divide the outer page table into 2 levels
* 4 memory accesses!

2nd outer page , outer page | innerpage offset

P1 P> P3 d
32 10 10 12
5 Colorado State University

Hashed Page Tables

20

Common in address spaces > 32 bits

The virtual page number is hashed into a page table

— This page table contains a chain of elements hashing to the
same location
Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element
Virtual page numbers are compared in this chain
searching for a match

— If a match is found, the corresponding physical frame is
extracted

Variation for 64-bit addresses is clustered page tables

— Similar to hashed but each entry refers to several pages (such
as 16) rather than 1

— Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

Colorado State University

Hashed Page Table

physical
logical address address

p d r d

Y

hysical
(@l Tl o 553

hash table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped page frame
(3) a pointer to the next element

Colorado State University

21

Inverted Page Table

« Rather than each process having

a page table and keeping track of
all possible logical pages, track
a" phySical pageS alggircezls | ¢ pgyésical
— One entry for each real page of cPU —lpd[p|d] [i]df— e
memory (“frame”)
— Entry consists of the virtual l R }
. search i
address of the page stored in =
that real memory location, with | p
information about the process -
that owns that page pmr
Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory
Colorado State University

22

Inverted Page Table

« Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference

OCCUrsS

* But how to implement shared memory?

— One mapping of a virtual address to the
shared physical address. Not possible.

Used in IA-64 ..

Colorado State University

23

Segmentation Approach

Memory-management scheme that supports
user view of memory

* A program is a collection of segments
— Asegment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

subroutine

symbol
table

Sqrt

main

« Segment table program

— Segment-table base register (STBR)
— Segment-table length register (STLR)

* segments vary in length, can very dynamically
« Segments may be paged

+ Used for x86-32 bit

» Origin of term “segmentation fault”

logical address

Colorado State University

25

What we expect in future

What are you guys looking forward to? Some answers.

 We will be on Mars

 That humans will land on Mars

* Further space travel and exploration

e Spaceships

* Expect to see colonies on Mars (and maybe work
started on a link/elevator to the moon)

[t was moon in our time -1969
Elon Musk - 2026? 7 months.

Colorado$tate University

* Intel IA-32 (x386-Pentium)
* X86-64 (AMD, Intel)
 ARM (Acorn > ARM Ltd > Softbank > Nvidea)

Colorado State University

27

Logical to Physical Address Translation in IA-32

logical address‘ selector | offset ‘
‘ descriptor table
segment descriptor T

32-bit linear address

logical linear physical
cPU address | segmentation | address | paging | address | physical
unit unit memory
page number page offset
P1 p2 d
10 10 12
. Colorado State University

29

Intel |A-32 Paging Architecture

(logical address)

. Page directory page table offset |
31 29 21 12 11 0
) 4 4
page 4-KB
Y table ¥ page
page I
directory

CR3 —» X 4-MB

register page
?
| Page directory offset |
31 22 21 0

Colorado State University

Intel |A-32 Page Address Extensions

B 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space

CR3

register

30

Paging went to a 3-level scheme

Top two bits refer to a page directory pointer table

Page-directory and page-table entries moved to 64-bits in size

Net effect is increasing address space by increasing frame address bits.

., Ppage directory | page table | offset |
31|30 29 2120 12 11 0
Y
-] | 4kB
| page
pége directory] page] page]
pointer table directory table

Colorado State University

Intel x86-64

Intel x86 architecture based on AMD 64 bit architecture

64 bits is ginormous (> 16 exabytes)

B [n practice only implement 48 bit addressing or perhaps 52
® Pagesizesof 4 KB, 2 MB, 1 GB

@ Four levels of paging hierarchy

M Can also use PageAddressExtensions so virtual addresses are 48
bits and physical addresses are 52 bits

page map page directory page page
| unused | level4 | pointertable | directory | table | offset
63 48 47 39 38 30 29 2120 1211 0

Exabyte: 1024° bytes

Colorado State University

31

32

Example: ARM Architecture

Dominant mobile platform chip
(Apple iOS and Google Android
devices for example)

Modern, energy efficient, 32-bit
CPU
4 KB and 16 KB pages
1 MB and 16 MB pages (termed
sections)
One-level paging for sections, two-
level for smaller pages
Two levels of TLBs

® Outer level has two micro

TLBs (one data, one
instruction)

® Inneris single main TLB

@) First inner is checked, on
miss outers are checked,
and on miss page table
walk performed by CPU

32 bits |
I
outer page inner page offset
4-KB
or
16-KB
—‘ page
M8 [
or
16-MB
section

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Spring 2021

Virtual Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

33

Virtual Memory: Objectives

www.onlinedatingmagazine.com

" You saN we weat oot
oand | vever caMed ¢

| Can'}y vemember

My Viltyal MeMovy
Mmost be low !

A virtual memory system

Demand paging, page-
replacement algorithms,
allocation of page frames to
processes

Threshing, the working-set model

Memory-mapped files and shared
memory and

ColoradaState University

36

Fritz-Rudolf Guntsch: Virtual Memory

Fritz-Rudolf Glintsch (1925-2012) at the
Technische Universitat Berlin in 1956 in
his doctoral thesis, Logical Design of a
Digital Computer with Multiple
Asynchronous Rotating Drums and
Automatic High Speed Memory
Operation.

First used in Atlas, Manchester, 1962

PCs: Windows 95

When was Win 95
introduced?

Colorado State University

Background

 Code needs to be in memory to execute, but entire
program rarely used

— Error code, unusual routines, large data structures
* Entire program code not needed at the same time

* Consider ability to execute partially-loaded
program

— Program no longer constrained by limits of physical
memory

— Each program uses less memory while running -> more
programs run at the same time

* Increased CPU utilization and throughput with no increase in
response time or turnaround time

— Less /0 needed to load or swap programs into memory
-> each user program runs faster

Colorado State University

37

Background (Cont.)

38

Virtual memory — separation of user logical
memory from physical memory

Virtual address space — logical view of how
process views memory

— Usually start at address 0, contiguous addresses until end of
space

— Meanwhile, physical memory organized in page frames
— MMU must map logical to physical

Virtual memory can be implemented via:
— Demand paging
— Demand segmentation That is the

new idea

Colorado State University

Virtual Memory That is Larger Than Physical Memory

page O
page 1
page 2 P
.
\' H BB
HER
[—f [} B
HEN
e -l
page v physical
virtual meme
memory
26 Colorado State University

40

Virtual-address Space: advantages

Usually design logical address space for
stack to start at Max logical address and
grow “down” while heap grows “up”

® Maximizes address space use

® Unused address space between the
two is hole

» No physical memory needed until heap
or stack grows to a given new page

Enables sparse address spaces with holes
left for growth, dynamically linked libraries,

etc.

System libraries shared via mapping into
virtual address space

Shared memory by mapping pages read-
write into virtual address space

Pages can be shared during fork (),
speeding process creation

Max

stack

heap

data

code

Colorado State University

41

stack

l

Shared Library Using Virtual Memory

stack

shared library

1

shared
pages

l

shared library

heap

data

code

|

heap

data

code

Colorado State University

Demand Paging

* Could bring entire process into memory
at load time

 Orbring a page into memory only when it
is needed: Demand paging

— Less I/O needed, no unnecessary I/O

— Less memory needed

— Faster response

— More users
e Similar to paging system with swapping
 Pageis needed = reference to it

— invalid reference = abort

— not-in-memory = bring to memory

* “Lazy swapper” — never swaps a page
into memory unless page will be needed

— Swapper that deals with pages is a
pager

Colorado State University

42

Demand paging: Basic Concepts

 Demand paging: pager brings in only those pages
into memory what are needed
* How to determine that set of pages?
— Need new MMU functionality to implement demand
paging
* If pages needed are already memory resident
— No difference from non-demand-paging

* If page needed and not memory resident
— Need to detect and load the page into memory from
storage

e Without changing program behavior
* Without programmer needing to change code

Colorado State University

43

Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

* Initially valid—invalid bit is set to i on all entries
 Example of a page table snapshot:

Frame # valid-invalid bit

- < [< |<

page table

During MMU address translation, if valid—invalid bit in page table
entry is i = page fault

” Colorado State University

45

~N o o1 B~ W N = O

Page Table When Some Pages Are Not in Main Memory

| m|m| OO | T| >»

H

logical
memory

frame

valid—invalid
bit

4

v
i
6 |V
i
i
v
i

~N oo o1k~ w0 N = O

page table

Page 0 in Frame 4 (and disk)

Page 1 in Disk

0
1
2
3 <A
S e
) J0d
6 C L]
;]
o F
1:’ HeEEE
” -
13
14
15
physical memory

Colorado State University

Page Fault

46

* If thereis a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault

1. Operating system looks at a table to decide:

— Invalid reference = abort
— Just not in memory, but in backing storage, ->2

2. Find free frame
Get page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit=v

5. Restart the instruction that caused the page fault

w

Page fault: context switch because disk access is needed

Colorado State University

47

Technical Perspective: Multiprogramming

Al .
‘?E o

Solving a problem gives rise to a new class of problem:

Contiguous allocation. Problem: external fragmentation

Non-contiguous, but entire process in memory: Problem:
Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

Demand Paging: Problem: page faults
How to minimize page faults?

Colorado State University

Steps in Handling a Page Fault

@ page is on
backing store //_\
operating
system @
reference
@ trap
load M e X [
restart page table
instruction
free frame e e
reset page bring in
table missing page
physical
memory

Colorado State University

48

