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FAQ

• Is there is specific formula for calculating the physical 
address from the logical address? Page number to frame number lookup

• Page (block of info) vs Frame (block of physical memory)

• Each process has its own page table? Can there be a 
conflict in sharing physical memory? No, unless..

• Can the page table dynamically change?
• Where is the page table? Memory, with a part cached in TLB

• How to find the page table in memory? Page table base 
register

• Where is the TLB ? On the same chip as CPU. 
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FAQ
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Paging Hardware With TLB

TLB: uses content addressable memory.

TLB Miss: page table access may be 
done using hardware or software

Page number  p  to frame number   f
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Effective Access Time
• Associative Lookup = e time units
• Hit ratio = a
• Effective Access Time (EAT): probability 

weighted
EAT = (100 + e) a + (200+e)(1 – a)

• Ex:
Consider a = 80%, e = negligible for TLB 
search, 100ns for memory access
– EAT = 100x0.80 + 200x0.20 = 120ns
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Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not 
in the process’s 
address space. 
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Shared Pages Example: 3 Processes

How are “pages” shared? 
Include in address space 
of both processes.

ed1, ed2, ed3
(3, 4, 6) shared



9

Overheads in paging:   Page table and internal fragmentation 

Optimal Page Size: 
page table size vs internal  fragmentation tradeoff

• Average process size = s
• Page size = p
• Size of each entry in page table = e 

– Pages per process = s/p 
– se/p: Total page table space for average process

• Total Overhead = Page table overhead + 
Internal fragmentation loss 
= se/p + p/2 
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Optimal Page size: Page table and internal fragmentation 

• Total Overhead = se/p + p/2 
• Optimal: Obtain derivative of overhead with 

respect to p, equate to 0 
-se/p2 +1⁄2 = 0 

• i.e.     p2 =2se    or p = (2se)0.5

Assume   s = 128KB and e=8 bytes per entry 
• Optimal page size = 1448 bytes

– In practice we will never use 1448 bytes 
– Instead, either 1K or 2K would be used 

• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier 
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Page Table Size
Memory structures for paging can get huge using 
straight-forward methods
• Consider a 32-bit logical address space as on 

recent processors 64-bit on 64-bit processors

– Page size of 4 KB (212) entries
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address 

space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024  or 1 kibibyte

220 1M mebibyte

230 1G      gigibyte

240 1T       tebibyte
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Issues with large page tables 

• Cannot allocate a large page table 
contiguously in memory   

• Solution: 
– Divide the page table into smaller pieces 
– Page the page-table 

• Hierarchical Paging
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Hierarchical Page Tables

• Break up the logical address 
space into multiple page tables

• A simple technique is a two-level 
page table

• We then page the page table

P1: indexes the outer page table
P2:  page table: maps to frame
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Two-Level Page-Table Scheme

P1: indexes the outer page table
P2:  page table: maps to frame

212 entries

212 pages,
each with 210 entries 
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Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page 

size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit page number 
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2is the displacement within the page of the inner page 
table

• Known as forward-mapped page table
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Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212
entry: page of the page table 

• Often only some of all possible 212 Page 
tables needed (each of size 210)



17

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average 
access time will be close to slightly more than one memory 
access time.
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64-bit Logical Address Space
! Even two-level paging scheme not sufficient
! If page size is 4 KB (212)

! Then page table has 252 entries
! If two level scheme, inner page tables could be 210 4-byte 

entries
! Address would look like

! Outer page table has 242 entries or 244 bytes
! One solution is to add a 2nd outer page table

!But in the following example the 2nd outer page table is still 234 bytes 
in size

4And possibly 4 memory access to get to one physical memory 
location!

Full 64 bit physical memories not common yet
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Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!
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Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the 
same location

• Each element contains (1) the virtual page number (2) 
the value of the mapped page frame (3) a pointer to the 
next element

• Virtual page numbers are compared in this chain 
searching for a match
– If a match is found, the corresponding physical frame is 

extracted
• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such 
as 16) rather than 1

– Especially useful for sparse address spaces (where memory 
references are non-contiguous and scattered) 
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Hashed Page Table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped   page frame  
(3) a pointer to the next element
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Inverted Page Table
• Rather than each process having 

a page table and keeping track of 
all possible logical pages, track 
all physical pages
– One entry for each real page of 

memory (“frame”)
– Entry consists of the virtual 

address of the page stored in 
that real memory location, with 
information about the process 
that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory 
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Inverted Page Table

• Decreases memory needed to store each 
page table, but increases time needed to 
search the table when a page reference 
occurs

• But how to implement shared memory?
– One mapping of a virtual address to the 

shared physical address. Not possible.

Used in IA-64 ..
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Segmentation Approach
Memory-management scheme that supports 
user view of memory 
• A program is a collection of segments

– A segment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)
– Segment-table length register (STLR)

• segments vary in length, can very dynamically
• Segments may be paged
• Used for x86-32 bit
• Origin of term “segmentation fault”
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What we expect in future

What	are	you	guys	looking	forward	to?	Some	answers.

• We	will	be	on	Mars
• That	humans	will	land	on	Mars
• Further	space	travel	and	exploration
• Spaceships
• Expect	to	see	colonies	on	Mars	(and	maybe	work	
started	on	a	link/elevator	to	the	moon)

• It	was	moon	in	our	time	-1969
• Elon	Musk	– 2026?		7	months.
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Examples

• Intel IA-32 (x386-Pentium)
• x86-64 (AMD,  Intel)
• ARM (Acorn > ARM Ltd > Softbank > Nvidea)
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Logical to Physical Address Translation in IA-32
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Intel IA-32 Paging Architecture
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Intel IA-32 Page Address Extensions

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

! 32-bit address limits led Intel to create page address extension (PAE), 
allowing 32-bit apps access to more than 4GB of memory space
! Paging went to a 3-level scheme
! Top two bits refer to a page directory pointer table
! Page-directory and page-table entries moved to 64-bits in size
! Net effect is increasing address space by increasing  frame address bits. 
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Intel x86-64
! Intel x86 architecture based on AMD 64 bit architecture
! 64 bits is ginormous (> 16 exabytes)
! In practice only implement 48 bit addressing or perhaps 52

" Page sizes of 4 KB, 2 MB, 1 GB
" Four levels of paging hierarchy

! Can also use PageAddressExtensions so virtual addresses are 48 
bits and physical addresses are 52 bits

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

Exabyte: 10246 bytes
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Example: ARM Architecture
" Dominant mobile platform chip 

(Apple iOS and Google Android 
devices for example)

" Modern, energy efficient, 32-bit 
CPU

" 4 KB and 16 KB pages
" 1 MB and 16 MB pages (termed 

sections)
" One-level paging for sections, two-

level for smaller pages
" Two levels of TLBs

! Outer level has two micro 
TLBs (one data, one 
instruction)

! Inner is single main TLB
! First inner is checked, on 

miss outers are checked, 
and on miss page table 
walk performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB 
section

32 bits
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Virtual Memory: Objectives
! A virtual memory system
! Demand paging, page-

replacement algorithms, 
allocation of page frames to 
processes

! Threshing, the working-set model
! Memory-mapped files and shared 

memory and
! Kernel memory allocation
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Fritz-Rudolf Güntsch: Virtual Memory

Fritz-Rudolf Güntsch (1925-2012) at the 
Technische Universität Berlin in 1956 in 
his doctoral thesis, Logical Design of a 
Digital Computer with Multiple 
Asynchronous Rotating Drums and 
Automatic High Speed Memory 
Operation.

First used in Atlas, Manchester, 1962

PCs:  Windows 95 

When was Win 95 
introduced?
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Background

• Code needs to be in memory to execute, but entire 
program rarely used
– Error code, unusual routines, large data structures

• Entire program code not needed at the same time
• Consider ability to execute partially-loaded 

program
– Program no longer constrained by limits of physical 

memory
– Each program uses less memory while running -> more 

programs run at the same time
• Increased CPU utilization and throughput with no increase in 

response time or turnaround time
– Less I/O needed to load or swap programs into memory 

-> each user program runs faster
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Background (Cont.)

• Virtual memory – separation of user logical 
memory from physical memory

• Virtual address space – logical view of how 
process views memory
– Usually start at address 0, contiguous addresses until end of 

space
– Meanwhile, physical memory organized in page frames
– MMU must map logical to physical

• Virtual memory can be implemented via:
– Demand paging 
– Demand segmentation That is the 

new idea
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Virtual Memory That is Larger Than Physical Memory
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Virtual-address Space: advantages
! Usually design logical address space for 

stack to start at Max logical address and 
grow “down” while heap grows “up”
! Maximizes address space use
! Unused address space between the 

two is hole
4 No physical memory needed until heap 

or stack grows to a given new page
! Enables sparse address spaces with holes 

left for growth, dynamically linked libraries, 
etc.

! System libraries shared via mapping into 
virtual address space

! Shared memory by mapping pages read-
write into virtual address space

! Pages can be shared during fork(), 
speeding process creation
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Shared Library Using Virtual Memory
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Demand Paging
• Could bring entire process into memory 

at load time
• Or bring a page into memory only when it 

is needed: Demand paging
– Less I/O needed, no unnecessary I/O
– Less memory needed 
– Faster response
– More users

• Similar to paging system with swapping 
• Page is needed Þ reference to it

– invalid reference Þ abort
– not-in-memory Þ bring to memory

• “Lazy swapper” – never swaps a page 
into memory unless page will be needed
– Swapper that deals with pages is a 

pager
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Demand paging: Basic Concepts
• Demand paging: pager brings in only those pages 

into memory what are needed
• How to determine that set of pages?

– Need new MMU functionality to implement demand 
paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from 

storage
• Without changing program behavior
• Without programmer needing to change code
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Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v Þ in-memory – memory resident, i Þ not-in-memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table 
entry is i Þ page fault



45

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk
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Page Fault

• If there is a reference to a page, first reference to 
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference Þ abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed
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Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:
• Contiguous allocation. Problem: external fragmentation
• Non-contiguous, but entire process in memory: Problem: 

Memory occupied by stuff needed only occasionally. Low 
degree of Multiprogramming.

• Demand Paging: Problem: page faults
• How to minimize page faults?
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Steps in Handling a Page Fault


