
1 1

Colorado State University
Yashwant K Malaiya

Fall 2021 L28
Final Review

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Needed
• Project Slides/Videos: available on teams
– Thank you all for sharing.

• You need to review
– Two research projects
– Two development projects
– Members of your team
– Identify one best research and one best development

project.

• Review form due Dec 11, 2021.
• Please finish course survey (Available in Canvas) by

ASAP, if not already done.

3

Undergraduate Teaching Assistant (UTA) Positions

Undergraduate Teaching Assistant (UTA) Positions:
• We are looking for a couple of good UTAs for CS370 for

Spring 2022.
• The UTAs are a part of the class team along with the

GTAs. The UTAs work for 10 hours a week. Please apply
soon using Handshake. Let me know if you have any
questions.

4
4

Final

• Final: Comprehensive but mostly from the second
half. 2 Hours.

• Mix: Problem solving, Diagram explanation,
True/False, Multiple choice, blanks etc.

• Rules:
• Sec 001, 801 local:
– may not sit next to usual neighbors or fellow team

members.
– May not leave the room without permission.
– No scratch paper permitted. Permitted Scientific

calculators allowed.

5

Grading
• Project D1, D2, D3, D4, D5 (raw/adjusted)
• Participation (raw/adjusted)
• Final (raw/adjusted)
• Letter Grades, possible adjustment

6
6

Study/Resources

• Terms, concepts, implementations, algorithms,
problems

• Lecture slides
– Also see Midterm Review Slides on website
– Possible questions not limited to Review Slides

• Quizzes, assignments
• Textbook

7
7

Deadlock Prevention
– If any one of the conditions for deadlock (with reusable

resources) is denied, deadlock is impossible.
– Restrain ways in which requests can be made

• Mutual Exclusion - cannot deny (important)
• Hold and Wait - guarantee that when a process requests a resource, it

does not hold other resources.
• No Preemption

– If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, the process
releases the resources currently being held.

• Circular Wait
– Impose a total ordering of all resource types.

8
8

Deadlock Avoidance
– Requires that the system has some additional apriori

information available.
– Simplest and most useful model requires that each process

declare the maximum number of resources of each type that it
may need.

– Computation of Safe State
– When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state.
Sequence <P1, P2, …Pn> is safe, if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by Pj with j<i.

– Safe state - no deadlocks, unsafe state - possibility of deadlocks
– Avoidance - system will never reach unsafe state.

9

Example: 12 Tape drives available in the system

• At time T0 the system is in a safe state because
– P1 can be given 2 tape drives
– When P1 releases its resources; there are 5 drives
– P0 uses 5 and subsequently releases them (# 10 now)
– P2 can then proceed.

Max need Current need

P0 10 5

P1 4 2

P2 9 2

At T0:
3 drives available

Safe sequence
<P1, P0 , P2>

10
10

Algorithms for Deadlock Avoidance
• Resource allocation graph algorithm

• only one instance of each resource type

• Banker’s algorithm
• Used for multiple instances of each

resource type.
• Data structures required

– Available, Max, Allocation, Need
• Safety algorithm
• resource request algorithm for a

process.

Unsafe
state

Suppose P2 requests R2. Although R2 is currently
free, we cannot allocate it to P2, since this action
will create a cycle getting system is in an unsafe
state. If P1 requests R2, and P2 requests R1, then
a deadlock will occur.

11
11

Deadlock Detection
• Allow system to enter deadlock

state
• Detection Algorithm

– Single instance of each resource type
– use wait-for graph

– Multiple instances of each resource
type

– variation of banker’s algorithm

• Recovery Scheme
• Process Termination
• Resource Preemption

Has cycles. Deadlock.

Resource-Allocation Graph
Corresponding wait-for graph

12
12

Binding of instructions and data to memory
– Address binding of instructions and data to memory

addresses can happen at three different stages.
– Compile time, Load time, Execution time

– Other techniques for better memory utilization
– Dynamic Loading - Routine is not loaded until it is called.
– Dynamic Linking - Linking postponed until execution time
– Swapping - A process can be swapped temporarily out of

memory to a backing store and then brought back into memory
for continued execution

– MMU - Memory Management Unit
– Hardware device that maps virtual to physical address.

13
13

Dynamic Storage Allocation Problem
– How to satisfy a request of size n from a list of free holes.

– First-fit
– Best-fit
– Worst-fit

– Fragmentation
• External fragmentation

– total memory space exists to satisfy a request, but it is not
contiguous.

• Internal fragmentation
– allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a partition,
but not being used.

• Reduce external fragmentation by compaction

14
14

Page Table Implementation
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table.
• Page-table length register (PTLR) indicates the size of page table.

– Every data/instruction access requires 2 memory accesses.
• One for page table, one for data/instruction
• Two-memory access problem solved by use of special fast-lookup hardware

cache (i.e. cache page table in registers)
– associative registers or translation look-aside buffers (TLBs)

15

Effective Access Time
Effective Access Time (EAT)
• Item in faster unit or in slower unit
• How often it is found in the faster unit?

– Access time less if in the faster medium
– Access time higher if in the slower medium

• Simplification: only two layers considered
• Approximation: some overhead may be ignored

Case 1: Need: page number to frame number
mapping
• Faster unit: TLB
• Slower unit: full Page table in memory

Should you understand the process or memorize the
formula?

16

Effective Access Time
• Hit ratio = a

– Hit ratio – percentage of times that a page
number is found in the TLB

• Associative Lookup = e time unit
• Memory access time = 100 ns

• Effective Access Time (EAT)
EAT = (100 + e) a + (200 + e)(1 – a)

Consider a = 80%, e = 20ns for TLB search, 100ns
for memory access
– EAT = 120 x 0.80 + 220 x 0.20 = 140ns

• Consider higher hit ratio -> a = 99%, e = 20ns for
TLB search, 100ns for memory access
– EAT = 120 x 0.99 + 220 x 0.01 = 121ns

17
17

Paging Methods
– Multilevel Paging

– Each level is a separate table in memory
– converting a logical address to a physical

one may take 4 or more memory
accesses.

– Caching can help performance remain
reasonable.

– Hashed page table
– Inverted Page Tables

– One entry for each real page of memory.
Entry consists of virtual address of page
in real memory with information about
process that owns page.

18
18

Virtual Memory
• Virtual Memory

• Separation of user logical memory
from physical memory.

• Only PART of the program needs to be
in memory for execution.

• Logical address space can therefore
be much larger than physical address
space.

• Need to allow pages to be swapped in
and out.

• Virtual Memory can be
implemented via
– Paging
– Segmentation

19
19

Demand Paging
• Bring a page into memory only when it is needed.

– Less I/O needed
– Less Memory needed
– Faster response
– More users

• The first reference to a page will trap to OS with a
page fault.

• OS looks at another table to decide
– Invalid reference - abort
– Just not in memory.

Page fault:
1. Find free frame
2. Get page into frame via scheduled disk

operation
3. Reset tables to indicate page now in memory

Set validation bit = v
4. Restart the instruction that caused the page

fault

20
20

Page Replacement Strategies
• The Principle of Optimality

– Replace the page that will not be used again the farthest time
into the future.

• FIFO - First in First Out
– Replace the page that has been in memory the longest.

• LRU - Least Recently Used
– Replace the page that has not been used for the longest time.
– LRU Approximation Algorithms - reference bit, second-chance

etc.
• Working Set

– Keep in memory those pages that the process is actively using

21

Least Recently Used (LRU) Algorithm
• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• Approximate Implementations:

– Counter implementation time of use field
– Stack implementation
– Reference bit
– Second chance

22
22

Allocation of Frames
– Single user case is simple

– User is allocated any free frame
– Problem: Demand paging + multiprogramming

• Each process needs minimum number of pages based on instruction
set architecture.

• Two major allocation schemes:
– Fixed allocation - (1) equal allocation (2) Proportional allocation.
– Priority allocation - May want to give high priority process more

memory than low priority process.
• Global vs local allocation

23

Working-Set Model
• D º working-set window º a fixed number of page references

Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent D (varies in time)
– if D too small will not encompass entire locality
– if D too large will encompass several localities
– if D = ¥Þ will encompass entire program

• D = SWSSi º total demand frames
– Approximation of locality

• if D > mÞ Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Δ = 10

24
24

File-System Implementation
– File System Structure

• File System resides on secondary storage (disks).
• To improve I/O efficiency, I/O transfers between memory and disk are

performed in blocks. Read/Write/Modify/Access each block on disk.
• File System Mounting - File System must be mounted before it can be

available to process on the system. The OS is given the name of the
device and the mount point.

– Allocation Methods
– Free-Space Management
– Directory Implementation
– Efficiency and Performance, Recovery

25

File Systems
• Many file systems, sometimes several

within an operating system
– Each with its own format

• Windows has FAT (1977), FAT32 (1996), NTFS (1993)
• Linux has more than 40 types, with extended file

system (1992) ext2 (1993), ext3 (2001), ext4 (2008);
• plus distributed file systems
• floppy, CD, DVD Blu-ray

– New ones still arriving –GoogleFS, xFAT, HDFS

26

On-disk File-System Structures
1. Boot control block contains info needed by system to boot OS

from that volume
– Needed if volume contains OS, usually first block of volume

2. Volume control block (superblock UFS or master file
tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free block

pointers or array
3. Directory structure organizes the files

– File Names and inode numbers UFS, master file table NTFS
4. Per-file File Control Block (FCB or “inode”) contains

many details about the file
– Indexed using inode number; permissions, size, dates UFS
– master file table using relational DB structures NTFS

Volume: logical disk
drive, perhaps a
partition

27

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file
– Indexed using inode number; permissions, size,

dates UFS

28

In-Memory File System Structures

• An in-memory mount table contains information about
each mounted volume.

• An in-memory directory-structure cache holds the
directory information of recently accessed directories.

• The system-wide open-file table contains a copy of the
FCB of each open file, as well as other information.

• The per-process open file table contains a pointer to the
appropriate entry in the system-wide open-file table

• Plus buffers hold data blocks from secondary storage
Open returns a file handle (file descriptor) for subsequent
use
• Data from read eventually copied to specified user

process memory address

29 29

Colorado State University
Yashwant K Malaiya

ICQ

CS370 Operating Systems

30

Memory vs Disk
How slow is magnetic disk relative to the memory?

A. Disk access is 25-50% slower.
B. One disk access is 10 to 100 times longer than a

memory access.
C. Modern Disks are faster.
D. Disk is several orders of magnitude slower.

31

Answer

32

Memory vs Disk
How slow is magnetic disk relative to the memory?

A. Disk access is 25-50% slower.
B. One disk access is 10 to 100 times longer than a

memory access.
C. Modern Disks are faster.
D. Disk is several orders of magnitude slower.

33 33

Colorado State University
Yashwant K Malaiya

ICQ

CS370 Operating Systems

34
34

Allocation of Disk Space
• Low level access methods depend upon the disk allocation

scheme used to store file data
– Contiguous Allocation

• Each file occupies a set of contiguous
blocks on the disk. Dynamic storage
allocation problem. Files cannot grow.

– Linked List Allocation
• Each file is a linked list of disk blocks. Blocks may

be scattered anywhere on the disk. Not suited
for random access.

• Variation - FILE ALLOCATION TABLE (FAT)
mechanisms

– Indexed Allocation
• Brings all pointers together into the index block.

Need index table. Can link blocks of indexes to
form multilevel indexes.

35

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Inode (file
control block)

Volume block:
Table with file
names
Points to this

Common: 12+3
Indirect block could
contain 1024 pointers.
Max file size: k.k.k.4k+

36

Free-Space Management
• File system maintains free-space list to track available blocks/clusters

– (Using term “block” for simplicity)
• Approaches: i. Bit vector ii. Linked list iii. Grouping iv. Counting
• Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =

!
"
1 Þ block[i] free

0 Þ block[i] occupied

Block number calculation

(number of bits per word) *(number of 0-value
words) + offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

00000000
00000000
00111110
..

37

Hard Disk Performance
• Average I/O time = average access time +

(amount to transfer / transfer rate) + controller
overhead

• Average access time = average seek time +
average latency

• Example: to transfer a 4KB block on a 7200 RPM
disk with a 5ms average seek time, 1Gb/sec
transfer rate with a .1ms controller overhead.
§ average latency = 0.5 x 1/(7200/60) = 0.00417 sec
§ Transfer time = 4KB / 1Gb/s = 4x8K/G = 0.031 ms
§ Average I/O time for 4KB block

= 5ms + 4.17ms + transfer time + 0.1ms
= 9.27ms + .031ms = 9.301ms

38

Disk Scheduling
• Several algorithms to schedule the servicing of disk I/O requests

– The analysis is true for one or many platters
– SCAN, C-SCAN, C-LOOK,

• We illustrate scheduling algorithms with a request queue
(cylinders 0-199) 98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53 (head is at cylinder 53)

Scan

39

RAID Techniques
• Striping uses multiple disks in parallel by

splitting data: higher performance, no
redundancy (ex. RAID 0)

• Mirroring keeps duplicate of each disk: higher
reliability (ex. RAID 1)

• Block parity: One Disk hold parity block for
other disks. A failed disk can be rebuilt using
parity. Wear leveling if interleaved (RAID 5,
double parity RAID 6).

• Ideas that did not work: Bit or byte level level
striping (RAID 2, 3) Bit level Coding theory (RAID
2), dedicated parity disk (RAID 4).

• Nested Combinations:
– RAID 01: Mirror RAID 0
– RAID 10: Multiple RAID 1, striping
– RAID 50: Multiple RAID 5, striping
– others

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Parity: allows rebuilding of a disk

Not common: RAID 2, 3,4
Most common: RAID 5

40

Parity

• Parity block: Block1 xor block2 xor block3 …

10001101 block1
01101100 block2
11000110 block3

00100111 parity block (ensures even number of 1s)

• Can reconstruct any bad block using all others

41

Read Errors and RAID recovery
• Example: RAID 5
– 10 one-TB disks, and 1 fails
– Read remaining disks to reconstruct missing data

• Probability of an error in reading 9 TB disks =
10-15*(9 disks * 8 bits * 1012 bytes/disk)
= 7.2% Thus recovery probability = 92.8%

• Even better:
– RAID-6: two redundant disk blocks
– Can work even in presence of one bad disk
– Scrubbing: read disk sectors in background to find and fix

latent errors

42

Hadoop: Core components

• Hadoop (originally): MapReduce + HDFS
• For Big Data applications.
• MapReduce: A programming framework for

processing parallelizable problems across huge
datasets using a large number of commodity
machines.

• HDFS: A distributed file system designed to
efficiently allocate data across multiple
machines, and provide self-healing functions
when some of them go down

43

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Name Node: metadata, where blocks are physically located
Data Nodes: hold blocks of files (files are distributed)

HDFS Block size: 64-128 MB
ext4: 4KB
HDFS is on top of a local file
system.

44

HDFS Fault-tolerance

• Individual node/rack may fail.
– Disks use error detecting codes to detect corruption.

• Data Nodes (on slave nodes):
– data is replicated. Default is 3 times. Keep a copy far away.
– Send periodic heartbeat (I’m OK) to Name Nodes. Perhaps once

every 10 minutes.
– Name node creates another copy if no heartbeat.

• Name Node (on master node) Protection:
– Transaction log for file deletes/adds, etc (only metadata recorded).
– Creation of more replica blocks when necessary after a DataNode

failure
• Standby name node: namespace backup

– In the event of a failover, the Standby will ensure that it has read all
of the edits from the Journal Nodes and then promotes itself to the
Active state

45

Implementation of VMMs
– Type 1 hypervisors - Operating-system-like software built to provide virtualization.

Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems that provide standard functions as
well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard operating systems but provide
VMM features to guest operating systems
• Includiing VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

46

Memory Management

Memory mapping:
• On a bare metal machine:

– VPN -> PPN
• VMM: Real physical memory (machine memory) is shared by the OSs.

Need to map PPN of each VM to MPN (Shadow page table)
PPN ->MPN

• Where is this done?
– In Full virtualization?

47

Live Migration

• Migration from source VMM to target VMM
– Source establishes a connection with the target
– Target creates a new guest
– Source sends all read-only memory pages to target
– Source starts sending all read-write pages
– Source VMM freezes guest, sends final stuff,
– Once target acknowledge

Guest Target running

5 – Send Dirty Pages (repeatedly)

4 – Send R/W Pages

3 – Send R/O Pages

1 – Establish0 – Running
Guest Source

V
M

M
 S

ou
rc

e

7 – Terminate
Guest Source

V
M

M
 T

ar
ge

t

2 – Create
Guest Target

6 – Running
Guest Target

48

Linux Containers and Docker

• Linux containers (LXC) are “lightweight” VMs
• Comparison between LXC/docker and VM

• Containers provide “OS-level Virtualization” vs “hardware level”.
• Containers can be deployed in seconds.
• Very little overhead during execution, just like Type 1.

49

Microservices Characteristics

• Many smaller (fine grained), clearly
scoped services
– Single Responsibility Principle
– Independently Managed

• Clear ownership for each service
– Typically need/adopt the “DevOps” model

• 100s of MicroServices
– Need a Service Metadata Registry

(Discovery Service)
• May be replicated as needed
• A microservice can be updated without

interruption

50

Cloud Capacity provisioning

User has a variable need for capacity. User can choose among
Fixed resources: Private data center
• Under-provisioning when demand is too high, or
• Provisioning for peak

Variable resources:
• Use more or less depending on demand
• Public Cloud has elastic capacity (i.e. way more than what the user

needs)
• User can get exactly the capacity from the Cloud that is actually needed

Why does this work for the provider?
– Varying demand is statistically smoothed out over many users,

their peaks may occur at different times
– Prices set low for low overall demand periods

51

Cloud Instance types/Service/Management models

Instance types
• On-Demand instances
• Spot Instances
• Reserved Instances
• Dedicated Hosts
Service models
• IaaS: Infrastructure as a Service
• PaaS: Platform as a Service
• SaaS: Software as a Service
Cloud Management models
• Public clouds
• Private clouds
• Hybrid clouds:

52

See you in the final.

