HELP SESSION 1
HW1 and C Review

CS370
COLORADO STATE UNIVERSITY
BY TOMAS VASQUEZ

Qutline

Overview of the assignment
Pointers and references
Dynamic Memory

Tying it all together/Questions

Overview of Assignment

- Required files
- |nitiator.c

« Worker.c

« Worker.h

Initiator.c

Takes in one command line argument
= Perform argument check

Set the seed with srand()

« atoi)

Invoke functions in worker.c

- float running_ratio = get_running_ratio();

What should be included in initiator.c so that it can call the functions in worker.c?

Worker.c

. int random_in_range(int lower_bound, int upper_bound)
- float get_running_ratio();

- int get_divisibility_count (int *array, int arraySize, int randomDividend);

You are encouraged to define new functions as you see fit. However, the above three
functions must be included.

int random_in_range(int lower_bound, int
upper_bound)

+ Returns a random number in range [a,b)

 Given to you in write up

int get_divisibility_count (int *array, int arraySize,
int randomDividend);

» Returns to get_running_ratio() the number of divisible items in each array.

float get_running_ratio();

« Controls flow of the program

1
2.
3.

Calculate the number of iterations for your loop

Allocate an array with the appropriate number of elements on each iteration

Populate the array with random integers (updated 9/2/2021)
Generate a new divisor per iteration

Calls get_divisibility_count()

Keep track of the iteration with the largest number of divisible integers.

Keep a running sum of the ratio of (divisible/non-divisible)

Returns average ratio across all iterations

=> (running sum-from step (6))/number of iterations-from step (1)

C review

-« The following slides are based on material gathered from CS370- Spring2021 Help
Session 1.

- Materials and images found on the following websites:
https://iq.opengenus.org/pointers-in-c/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

e

https://www.cprogramming.com/tutorial/makefiles.html

C review: Pointers

- A pointer declared datatype *var_name is a reference to a section of memory allocated
for some type of object.

 * operator is the de-referencing operator.
It has dual meaning.
1) declaring a pointer int *p;
2) Accessing what the pointer is pointing to printf("%d", *p);

Warning regarding dangling pointersllii|

References

#include<stdio.h>

I nERERIN (@)
i
Sigekerife e X = 5
« The & operator is used to obtain the return &x;
address of an object so that it may be ¥
assigned to a pointer. E”t main()
+ Letint ™p; s ~[9 = TR

| s _ ==
If int x =5; and p = &x printf("%d",*p);
Then return *p equals?

Image taken from:

https://ig.opengenus.org/pointers-in-c/

Refe Frences void pasi,ByValue(int n) {
continued }

void passByAddress(int *b) {
*b — J_l;

- Use the & operator to pass an s
object by address.

int main(void) {

1 = 10
. Wh r? e fe 1Y,
y passbyValue(c);
- Its less costly than copying the passbyAddress(&c);

: return 0;
object.

Image taken from:

https://ig.opengenus.org/pointers-in-c/

Arrays

« Declaring an array
Data_type array_name [array_size J;

Data_type array_name[n] = {x0,x1,x2,x3, ... xn-1} where (x0,..,.xn-1) are objects of the data_type and n is
the size of the array.

NOTE: this is how you declare and innitialize an array on the stack. Your assignment requires you
to do so on the heap. More on that nextl

NOTE: [n] may be omitted in favor of []. Which implies you do not have to give a size when you
declare and initialize in the same step.
« |ndexing in arrays —zero based index
Array_namel[0] =5
return Array_name[0] -> returns 5

Arrays as pointers

« Int my_array[] = {1,2,3,4,5};

« Int *p = my_array;

- What does p contain? What about *p?

« Int x = *(p+i) equivalent to x = pli] (updated 9/2/2021)
p= &my_array[2]

- What does p contain?

« My_arrayli] is equivalent to *(my_array+i)

More operations on pointers

¢ Fp++

Says give me the value at p, then increment p such that it points to the next element.

By how much is it incremented?

« F+4p

Says increment p and give me the value that p is now pointing to.
*

o++p

Says increment the value at p

Pointers and Strings

- A string in C is an array of char types.

. It is terminated by \0" which is the null character.
- char my_string[] ="Hello World!"

- What is the size of my_string?

« Check it yourself

o printf("%lu\n", (sizeof(my_string)/sizeof(char)));

Arrays as pointers

int array[10];
e “Terelril = Gy
el [0]]] = L3

*(Carray + 1)
*(1 + array)
array[2] = 4;

Image taken from:

https://ig.opengenus.org/pointers-in-c/

THE HEAP

« Your assignment requires you to allocate on the heap.

« void* malloc(size_t size):

"allocates memory block of given size (in bytes) and returns a pointer to the beginning of the
block. "

malloc() doesn't initialize the allocated memory:.

« void* calloc(size_t num, size_t size);

Similar to malloc but initiallises the memory to zero

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Free() and Valgrind

- You need to free the memory you allocate

- How do you check for memory leaks?
Valgrind: A program for tracking memory leaks and errors.
Command: valgrind -q --leak-check=full ./a.out
To see the line where the memory leak occurred compile with —g flag

gcc —-o test —g test.c
See this helpful lab from C5253 taught by Jack Applin for instructions on how to use valgrind
NOTE: This lab is in c++ but valgrind works all the same.

Please don't use c++ code or compiler.

https://www.cs.colostate.edu/~cs253/Fall21/Lab/Valgrind

https://www.cs.colostate.edu/~cs253/man.php?valgrind

Sample array on the heap and using free()

#include <stdio.h>
#include <stdlib.h>

int main ()

{

int* arr;

arr = (int*)malloc (5 *

free (arr) ;

arr = (int*)calloc (5,

free (arr) ;

(0) ;

Image taken from:

https://www.geeksforgeek
s.org/difference-between-
malloc-and-calloc-with-
examples/

Makefile

* A Makefile is simply a way of associating short names, called targets, with a series of commands to
execute when the action is requested
« Default target: make
« Alternate target: make clean

Makefile continued

« Basic macro: CC=gcc
. Convert a macro to its value in a target: $(CC)
- Ex: $(CC) a_source_file.c gets expanded to gcc a_source_file.c

« - To execute: make / make build - To clean: make clean

Makefile Sample

« files=Programl.c Program?2.c
« out_exe= Programl
« build: $(out_exe)

« $(out_exe): $(files)
$(CC) -0 $(out_exe) $(files)
« package:
tar —cvzf John_Doe tar *.c *.h *.txt Makefile

e clean:

rm -f $(out_exe)

Any questions”

https://askleo.com/what-is-facebook-fan-friday/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Acknowledgements

- These slides are based on contributions of current and past CS370 instructors and TAs,
including Jack Applin, Abhishek Yeluri, Kevin Bruhwiler, Yashwant Malaiya and Shrideep
Pallickara.

