
Programing with Multiple
Processes in C

fork,	wait,	execlp,	file	operations,	and	make

CS 370 - Operating Systems - Fall 2021 1

Assignment Information

• Four executables will be needed
• Initiator – Main program, that opens, reads the characters and closes the file, forks child

processes.
• Pell, Composite, Total

CS 370 - Operating Systems - Fall 2021 2

Outline

• Learn how to use the following
• fork()

• wait()

• execlp()

• file operations

• make

3CS 370 - Operating Systems - Fall 2021

fork()

• Generates an exact copy of parent process except for the value it returns
• In a child process, fork() returns zero
• In the parent process it will return the child’s process ID
• If return value is -1, then fork() failed.
• Any process can retrieve its process ID with getpid(), and its parent process ID

with getppid()
• Syntax:

• pid_t fork();

4CS 370 - Operating Systems - Fall 2021

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main() {
fork();
fork();
fork();
printf("hello\n");
return 0;
}

CS 370 - Operating Systems - Fall 2021

wait()

• Makes parent process wait until the child has been entirely executed

• Use WIFEXITED() to check whether child process has terminated normally,
as opposed to dying with a signal

• Use WEXITSTATUS() to retrieve return value of child process

• Syntax: pid_t wait(int *stat_loc);

6CS 370 - Operating Systems - Fall 2021

execlp()

• Executes a new program within a child process
• Arguments passed - the name of the executable and filename like "./Starter",

"Starter"
• Also pass any needed command line arguments as parameters
• Terminate list of arguments with NULL
• Syntax

• int execlp("./executable_path", "program_name", const char *arg,
…, NULL);

• Regard the arguments as program followed by argv[].
7CS 370 - Operating Systems - Fall 2021

File Operations

• We need several functions for this assignment.
• They are:

• fopen()
• fclose()
• fgets() or fgetc()

8CS 370 - Operating Systems - Fall 2021

fopen()

• Used to open a file, whose name is given as the argument.

• It returns a pointer to the opened file.

• Syntax:
• FILE * fp = fopen(const char *filename, const char *mode)

9CS 370 - Operating Systems - Fall 2021

fclose()

• Closes the stream to the file.

• Buffers are flushed.

• Syntax
• int fclose(FILE *stream)

10CS 370 - Operating Systems - Fall 2021

fgets()

• Reads a line from a file

• Puts the line into the provided array/string

• Syntax:
int fgets(char *s, int size, FILE *stream)

• Use:
char buf[256];
while (fgets(buf, sizeof(buf), in)

// deal with the string in buf

11CS 370 - Operating Systems - Fall 2021

Why use make?

• Enables developers to easily compile large and complex programs with many
components.

• Situation: There are thousands of lines of code, distributed in multiple
source files, written by many developers and arranged in several sub-
directories. This project also contains several component divisions and these
components may have complex inter-dependencies.

12CS 370 - Operating Systems - Fall 2021

Demo Makefile
Simple version

13

CC = gcc

.c.o:
$(CC) -o P1.c P2.c P3.c p4.c

default: all
all: p1 p2 p3 p4

package:
zip -r Mohit.zip p1.c p2.c p3.c p4.c Makefile
input.txt

clean:
rm -f *.o *~ p1 p2 p3 p4

CS 370 - Operating Systems - Fall 2021

Variable assignments in make

• By convention, predefined variable names used in a Makefile are in upper
case, and user-defined variables are lower case.

Example: CC = gcc

• We can use the value assigned later on as $()

Example: $(CC)

14CS 370 - Operating Systems - Fall 2021

Makefile Structure

• Makefile contains definitions and rules.
• A definition has the form:

VAR = value
• A rule has the form:

Output files: input files
<tab>Commands to turn inputs to outputs

• All commands must be tab-indented. Spaces don't work!
• The make <target> command executes the rule with the <target>. If target not is

specified, it defaults to the first rule defined in the Makefile.

15CS 370 - Operating Systems - Fall 2021

Patterns and Special variables

• % : Wildcard pattern-matching, for generic targets.

• $@ : Full target name of the current target.

• $? : Returns the dependencies that are newer than the current
target.

• $* : Returns the text that corresponds to % in the target.

• $< : Name of the first dependency.

• $^ : Name of the first dependency with space as the delimiter.
16CS 370 - Operating Systems - Fall 2021

Demo Makefile

17

What we’re trying to create:
C_SRCS = p1.c p2.c p3.c p4.c

Compiler command & flags
-g : generate debug info.
-Wall: enable many compiler warnings

CC = gcc
CFLAGS = -std=c11 -g -Wall -c -l

Default (first) target is the executables
build: $(programs)

Create Fibb from LowAlpha.c:
Fibb: Fibb.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $?

Actually, make already knows how to create
a program from a .c file, so the rule above
was unnecessary.

Clean up the directory
clean:
rm -f *.o *~ $(programs)

CS 370 - Operating Systems - Fall 2021

Demo program output

$./Initiator input.txt
Initiator[735610]: Forked process with ID 735614.
Initiator[735610]: Waiting for Process [735614].
Pell[735614] : Number of terms in Pell series is 15
Pell[735614] : The first 15 numbers of the Pell
sequence are:
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741,
13860, 33461, 80782,
Initiator: Child process 735614 returned 142.
Initiator[735610]: Forked process with ID 735615.
Initiator[735610]: Waiting for Process [735615].
Composite[735615]: First 15 composite numbers
are:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22,
24, 25,
Initiator: Child process 735615 returned 25.
Initiator[735610]: Forked process with ID
735616.
Initiator[735610]: Waiting for Process
[735616].
Total[735616] : Sum = 120
Initiator : Child process 735616 returned 120.
Pell: 142
Composite: 25
total Count: 120

Thank You

CS 370 - Operating Systems - Fall 2021

Acknowledgements

• These slides are based on contributions of current and past CS370
instructors and TAs, including J. Applin,A. Yeluri, Y. K. Malaiya, Phil sharp
and S. Pallickara.

20CS 370 - Operating Systems - Fall 2021

