
CS370 – Homework 3
Pipes and Shared Memory

Program Description

• Initiator receives the filename through the command line argument.

• Initiator then creates a pipe and checks for successful creation.

• Pass the pipe reference to Reader for maintaining a running sum of the
inputs.

• Reader writes the sum to the pipe using the provided reference. (only the
write end is required)

CS 370 - Operating Systems – Fall 2021 2

Program Description

• The control is passed back to the Initiator file where we reads contents of
the pipe into a char array.

• Initiator creates three shared memory segments, for Pell, Composite, and
Total.

• Further, we print the name and the file descriptor of the shared memory.

• Fork the Pell, Composite, and Total programs, and pass the name of the
corresponding shared memory segment.

CS 370 - Operating Systems – Fall 2021 3

Program Description

• The Pell, Composite, and Total write the last value calculated to the shared
memory segment.

• The three child processes must run concurrently and not sequentially.

• Initiator waits for all the child processes to complete and then prints the
return value from the shared memory.

• Finally, unlink the shared memory.

CS 370 - Operating Systems – Fall 2021 4

Run Processes Concurrently

• In Assignment 2, the wait condition for the child was written before the
parent process forked the next child.

• This leads to linear/sequential execution. However, for this Assignment, we
need to execute the programs concurrently.

• Hence, the Initiator must fork all the child processes and then use the wait()
command for each of them.

CS 370 - Operating Systems – Fall 2021 5

Function Description

• pipe()

• shm_open()

• ftruncate()

• mmap()

• shm_unlink()

• sprintf()

CS 370 - Operating Systems – Fall 2021 6

pipe()

7CS 370 - Operating Systems – Fall 2021

Syntax: int pipe(int pipefd[2]);

Arguments: pipefd[2] is the array to represent two ends of the pipe. Each
end is a file descriptor (FD).

Example: int pipefds[2];

int result_pipe = pipe(pipefds);

shm_open()

8CS 370 - Operating Systems – Fall 2021

Syntax: int shm_open(const char *name, int oflag, mode_t mode);

Arguments: name: name of the memory segment
oflag: can take the following values: O_RDONLY, O_RDWR,
O_CREAT, O_EXCL, O_TRUNC
mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;
int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR,
0666);

ftruncate()

9CS 370 - Operating Systems – Fall 2021

Syntax: int ftruncate(int fd, off_t length);

Arguments: fd: is the file descriptor

length: is the desired size of the memory segment. (Will be
initialized to 0)

Example: int result = ftruncate(fd, 1234);

mmap()

10CS 370 - Operating Systems – Fall 2021

Syntax: void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Arguments: addr: beginning address of the memory object

length: length of the memory object in bytes

prot: protection of the pages (PROT_EXEC, PROT_READ,
PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes
mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)

mmap()

11CS 370 - Operating Systems – Fall 2021

Arguments: fd: returned by shm_open
offset: is 0 in here

Example: mmap(0, size, PROT_READ, MAP_SHARED, shm_fd, 0);

shm_unlink()

12CS 370 - Operating Systems – Fall 2021

Syntax: int shm_unlink(const char *name);

Arguments: name: is the memory object name to be unlinked

Example: int error = shm_unlink(shm_Name);

sprintf()

13CS 370 - Operating Systems – Fall 2021

Syntax: int sprintf(char * buffer, const char * string, ...);

Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);

Makefile

• Following change is needed in your Makefile from Assignment 2
• Add –lrt during compilation to call shm_open() and shm_unlink()

(see point 4 from Notes in last page of Assignment 3)

14CS 370 - Operating Systems – Fall 2021

Other Requirements

• Code should compile and run on CS Department computers.

• Submit all .c, along with Makefile and README.txt

15CS 370 - Operating Systems – Fall 2021

Quick Review

• Initiator calls the Reader by passing it the file name and the write end file
descriptor of the pipe. The Reader maintains a running sum of each line
and writes the sum to the pipe.

• Initiator forks three child processes Pell, Composite, and Total. Three
shared memories are created for each child to write the last calculated
result.

• Remember to unlink the shared memory!

16CS 370 - Operating Systems – Fall 2021

Project Grade and Deadlines

17

Deliverable Date Points
D1 Team composition and idea
proposal

10/1/2021 5%

D2 Progress report 11/4/2021 15%
D3 Slides and final reports 12/2/2021

75%
D4 Presentations/Demos 12/6/21 or 12/8/21
D5: Peer Reviews 12/11/2021 5%

This assignment would be worth 10 points towards your final grade. D3 and D4 combined are worth 75%.
This includes your participation in viewing the work of other fellow students and participation in the related
events.
CS 370 - Operating Systems – Fall 2021

Option A: Research a technical topic

• A list of topics is available

• Must be of current interest and related to operating systems

• You will research using in-depth research/industrial publications and news
articles.

• You will learn about the state of the art and current technological trends.

• A formal report is the specified format will be needed. A presentation using
slides/poster is also required.

18CS 370 - Operating Systems – Fall 2021

https://www.cs.colostate.edu/~cs370/Fall21/assignments/TermPaperF21.pdf

Option B: An embedded/IoT system

• Project must involve a platform (such as a Raspberry Pi) with WiFi capability which will
communicate with at least one other computer and with at least one sensor.

• You will specify the project objective, select the appropriate platform, hardware/software
needed. Your proposal must include a justification of the choices.

• After you have built your system, you must evaluate your project for at least two of the
following attributes
• Potential security holes
• Power consumption
• Limitations like resolution or accuracy etc., (Cost and marketability of the project)

• A report, a demonstration, and a set of slides will be needed.
• How to set up your Raspberry Pi. You need to locate similar information for other boards.

19CS 370 - Operating Systems – Fall 2021

https://www.cs.colostate.edu/~cs370/Spring21/assignments/CS370.RaspberryPi.pdf

Project Choices

• Teams: Team sizes of 2 or 3. You get to choose! Work should be divided
evenly among group members.
• Choice A: Research a technical topic of current interest. A list of topics is already

available. The topic needs to be pre-approved.

• Choice B: An embedded/IoT development project. Research the aim, platform, obtain
hardware/software. Need a critical design evaluation and a demo.

20CS 370 - Operating Systems – Fall 2021

Acknowledgements

• These slides are based on contributions of current and past CS370
instructors and TAs, including J. Applin, L. Mendis, M. Warushavithana, S. R.
Chowdhury, A. Yeluri, K. Bruhwiler, Y. K. Malaiya and S. Pallickara.

21CS 370 - Operating Systems – Fall 2021

Thank You
Questions?

