
CS 370: OPERATING SYSTEMS
Department of Computer Science
Colorado State University

URL: http://www.cs.colostate.edu/~cs370
PROFESSOR: Shrideep Pallickara

Page 1 of 5

Homework 1
WORKING WITH MEMORY ALLOCATIONS AND DEALLOCATIONS

The objective of this assignment is a simple refresher on memory allocations and deallocations using C.
Please note that the assignment is crafted such that using tools such as Valgrind will not help you.

Due: Wednesday, September 6th @ 8:00 pm MT

1 Description of Task

For this assignment you will be working with two programs: the Driver and the MemoryManager.

Driver The driver module is responsible for:

1. Invoking functions in the MemoryManager.
2. Setting upper bounds for memory consumption. This will be fixed, please do not change it.

A complete Driver program (Driver.c) is provided to you with the skeleton.

MemoryManager The memory management module is responsible for:

Implementing the core functionality of this assignment. It is responsible for:

1. Allocating and de-allocating data structures
2. Populating elements in the data structure
3. Computing the median element within the data structure
4. Checking to see if the median number is divisible by 13
5. Maintaining a running count of median elements that were divisible by 13.

Your functionality will be go inside the function get_running_count() in the MemoryManager.c file.
Many of the auxiliary methods are already implemented for you in this file as discussed in the next
section. You are strongly encouraged to use these functions instead of implementing your own. This will
allow you to focus on the core segments of the assignment, avoid spending time on auxiliary paths, and
also to avoid issues during grading due to bugs and misinterpretation of requirements of these utility
functions.

All print statements must indicate the program that is responsible for generating them. To do this, please
prefix your print statements with the program name i.e. Driver or MemoryManager. Section 4 below
depicts these sample outputs.

CS 370: OPERATING SYSTEMS
Department of Computer Science
Colorado State University

URL: http://www.cs.colostate.edu/~cs370
PROFESSOR: Shrideep Pallickara

Page 2 of 5

2 Task Requirements

1. The Driver accepts one command line argument. This is the seed for the random number generator.

“Random” number generators and seeds
The random number generators used in software are usually not truly random. The
generator is initialized with a “seed” value, then a mathematical formula generates a
sequence of apparently random numbers. But, if you re-use the same “seed”, you get
that same sequence of numbers again.

Other uses of seeding the random number generator
Seeding the random number generator is useful for debugging in discrete event
simulations (that are used to model complex phenomena) particularly stochastic ones.
When a beta tester observes a problem in the program, you can re-create exactly the
same simulation they were running. It can also be used to create a repeatable “random”
run for timing purposes.

Nota Bene: We will be using different “seeds” to verify the correctness of your
implementation.

In the Driver.c file, the seed is already set for the random number generator based on the
command line argument that were provided.

srand(seed);

2. The driver will restrict the memory bounds that can be consumed by the process. These bounds
have been set for you in the skeletal code that has been provided. Please do not change this.

3. The driver program will invoke the memory-manager. This has been already implemented for you in
the Driver.c file.

int running_count = get_running_count();

printf("With seed: %d\t%d\n\n", seed, running_count);

4. The memory-manager uses the random number generator to compute the number of times that it
must allocate and de-allocate arrays. The number of iterations should be between 100,000 (inclusive)
and 120,000 (exclusive). A utility method called get_iteration_count is provided for you inside
the MemoryManager.c skeleton file which will map a given random integer into the above range.

Steps 5 through 9 (enumerated below) are repeated in a loop and the number of times the loop is
executed is dependent on the random number that was returned.

To generate a random number, invoke the rand() function available in stdlib library. This library
is already included in the MemoryManager.c skeleton file.

CS 370: OPERATING SYSTEMS
Department of Computer Science
Colorado State University

URL: http://www.cs.colostate.edu/~cs370
PROFESSOR: Shrideep Pallickara

Page 3 of 5

5. The memory-manager uses the random number generator to compute the size of the array that must
be allocated. The array size should be between 1000(inclusive) and 1500(exclusive). Again, another
utility method named get_arr_size is provided in the skeleton file to port a random number to this
range. The array should be allocated in the heap; failure to do so will result in a 5 point deduction.

Allocating on the heap versus the stack
An array is created on the heap by explicitly allocating memory using malloc or similar functions.
On the other hand, allocating an array in the stack can be done as follows: int arr[num_of_elem];

If memory is allocated on the heap, it should be released explicitly (e.g. using 'free') whereas
memory is automatically released for stack variables when they go out of scope – hence the
penalty.

6. After the memory-manager has allocated the array, it uses the random number generator to populate
each element of the array.

7. This array is then sorted so that the numbers are in ascending order.

8. The median element of the array is retrieved. For simplicity, use the ⌊𝑎𝑟𝑟𝑎𝑦_𝑠𝑖𝑧𝑒/2⌋ formula to calculate
the index of the median in the sorted array irrespective of the number of elements in the array.

Steps 7 and 8 are implemented in a utility method named return_median function in
MemoryManager.c file for your convenience. You should pass the populated array and the number of
elements in the array as input arguments when invoking this function.

9. Next, you must check if this median element is divisible by 13. If it is, you must increment the

running count of such values by 1.

10. Once loop variable initialized in Step 4 has reached its limit, you exit from the loop and report
on the total number of median elements that were divisible by 13.

CS 370: OPERATING SYSTEMS
Department of Computer Science
Colorado State University

URL: http://www.cs.colostate.edu/~cs370
PROFESSOR: Shrideep Pallickara

Page 4 of 5

3 Skeleton Code

Skeleton code is provided you with the following files. You do not need to use any other library while
implementing the required tasks. All the required libraries are included in the skeleton files. The skeleton
code can be downloaded from the course web site.

1. Driver.c – You are not required to modify this program.

2. MemoryManager.c – You need to implement the body of the function get_running_count in this
file as per the instructions given above.

3. MemoryManager.h – This header files declares the methods exposed from MemoryManager.c,

so that they can be invoked from the Driver program. You are not required to modify this file.

Please refer to the README.txt file inside the skeleton package on how to compile and run the
program.

4 Example Outputs:

[Driver] With seed: 1234
[MemoryManager] Number of Iterations: 102414
[Driver] Running Count: 7850

[Driver] With seed: 7979
[MemoryManager] Number of Iterations: 100505
[Driver] Running Count: 7832

CS 370: OPERATING SYSTEMS
Department of Computer Science
Colorado State University

URL: http://www.cs.colostate.edu/~cs370
PROFESSOR: Shrideep Pallickara

Page 5 of 5

5 What to Submit
Use the CS370 Canvas to submit a single .zip file that contains:

• All .c and .h files related to the assignment (please document your code),

• a Makefile that performs both a make clean as well as a make all,

• a README.txt file containing a description of each file and any information you feel the grader
needs to grade your program.

Filename Convention: You should keep the .c and .h filenames as they are in the skeleton code; any
additional files can have the names you want. The archive file should be named as <FirstName>-
<LastName>-HW1.zip . E.g. if you are Cameron Doe and submitting for assignment 1, then the zip file
should be named Cameron-Doe-HW1.zip.

6 Grading
The assignments much compile and function correctly on machines in the CSB-120 Lab. Assignments
that work on your laptop on your particular flavor of Linux, but not on the Lab machines are considered
unacceptable.

This assignment will contribute a maximum of 5 points towards your final grade. The grading will also
be done on a 5 point scale. The points are broken up as follows:

1 point each for correctly performing Task 1, 4, 5 and 9 (4 points)

1 point for getting the rest of the things right!

Deductions:
There is a 5-point deduction (i.e. you will have a zero on the assignment) if you:

(1) Modifying bounds specified in the Driver file.
(2) Allocate the array on the stack instead of the heap.
(3) Have an out of memory error or a segmentation fault: this is indicative of a memory leak, the

very problem you are supposed to avoid.

You are required to work alone on this assignment.

7 Late Policy
Click here for the class policy on submitting late assignments.

