CS 370: OPERATING SYSTEMS [INTRODUCTION]

Shrideep Pallickara Computer Science Colorado State University

COMPUTER SCIENCE DEPARTMENT

1

Topics covered in this lecture

- □ Course Overview
- Expectations
- Introduction

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.2

Course webpage

- □ All course materials will be accessible via the public-facing webpage (https://www.cs.colostate.edu/~cs370)
 - Schedule (Lecture slide sets for each lecture)
 - Assignments
 - Syllabus
 - Grading
- □ Grades will be posted on **Canvas**; assignment submissions will be via Canvas
- □ The course website, MS Teams Channel, and Canvas are all live now

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.3

3

Office Hours: Details on Canvas Page

- □ Professor
 - Shrideep Pallickara
 - □ Fridays 3:00-4:00 pm in CSB-364 and via Zoom
 - Focused on course concepts
- □ TA Office hours focused exclusively on programming assignments
 - □ Office Hours: CSB-120 and MS Teams
 - GTAs: Max Bar-On and Oluwatosin Falebita
 - UTAs: Karissa Barnes, Caleb Chou, and Josiah Hegarty

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMEN

INTRODUCTION

L1.4

TA Office Hours: Almost Finalized

**All changes will be reflected on the course webpage

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Max Bar-on	5:30-8:00 pm	5:30-8:00 pm	12:30-5:00 pm 5:30-8:00 pm	5:30-8:00 pm	12:30-5:00 pm	ı
Oluwatosin Falebita	12:00-2:00 pm 4:00-6:00 pm	11:00-2:00 pm	10:00-2:00 pm 4:00-6:00 pm	10:00-1:00 pm	1:00-4:00 pm	
Karissa Barnes	2:00-4:00 pm	5:00-8:00 pm	2:00-4:00 pm		11:00-1:00	
Caleb Chou	11:30-1:30 pm	5:00-7:00 pm	11:30-1:30 pm	5:00-6:00 pm	11:00-1:00 pm	ı
Josiah Haggerty		5:00-7:00 pm	6:00-8:00 pm	5:00-7:00 pm		10:00-1:00 pm

Professor: Shrideep Pallickara

Computer Science Department

INTRODUCTION

L1.5

Б

Communications

- □ Please DO NOT use Canvas messaging for communications
 - Please send communications to compsci_cs370@colostate.edu
- □ The e-mail account is checked by the entire team and allows us to respond to communications in a timely fashion
- □ Send e-mails from accounts that match your name
 - No pseudonyms please
- □ Do not post code on the MS Teams Channel

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.6

Topics that we will cover in CS 370

- □ Processes and Threads
- □ Process Synchronization (plus Atomic Transactions)
- □ CPU Scheduling: MFQ, CFS
- Deadlocks
- □ UNIX I/O
- □ Memory Management
- □ File System interface and management. Unix file system. NTFS.
- □ Storage Management including SSDs and Flash Memory
- □ Virtualization and Containers

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.7

Course Textbook

Operating Systems Concepts, 9th edition Avi Silberschatz, Peter Galvin, and Greg Gagne Publisher - John Wiley & Sons, Inc.

ISBN-13: 978-1118063330.

Professor: SHRIDEEP PALLICKARA COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

When I make slides, I usually refer to several texts. These include ...

- Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014. Prentice Hall. ISBN: 013359162X/978-0133591620
- □ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice, 2nd Edition. Recursive Books. ISBN: 0985673524/978-0985673529
- Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau. Operating Systems: Three Easy Pieces. 1st edition. CreateSpace Independent Publishing Platform. ISBN-13: 978-1985086593
- □ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall ISBN-13: 978-0-13-042411-2
- □ I always list my references at the end of every slide set

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.9

9

INFOSPACES (https://infospaces.cs.colostate.edu)

- □ Knowledge repository my lab has been building to enhance learning
- □ All videos are designed to be less than 2 minutes
- □ Improving INFOSPACES
 - Let us know what you would like to see
 - □ If you'd like to contribute to this repository let us know!

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.10

11

Grading Policy I

- □ Letter grades will be based on the following standard breakpoints:
 - >= 90 is an A, >= 88 is an A-,
 - \rightarrow >=86 is a B+, >=80 is a B, >=78 is a B-,
 - >=76 is a C+, >=70 is a C,
 - >=60 is a D, and <60 is an F.
- □ I will not cut higher than this, but I may cut lower.
- ☐ There will be **no make-up exams**
 - Exceptions for extenuating circumstances with documentation

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.13

13

Grading Policy II

- □ Every assignment will be posted at least 2 weeks before the due date.
 - Every assignment will include information about how much it will count towards the course grade, and how it will be graded.
- □ Late submission penalty: 10% per-day for the first 2 days and a ZERO thereafter.
 - Detailed submission instructions posted on course website.
 - Assignments will be graded within 2 weeks of submission
 - Submission of wrong files day 3-4: 40% deduction

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.14

For the Quizzes and Tests

- □ I will only ask questions about what I teach
 - □ If I didn't teach it, I won't ask from that portion
- □ If the concepts were covered in my slides
 - □ You should be be able to answer the questions
- □ I won't ask questions about arcane aspects of some esoteric device controller

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.15

15

Exams

- □ There will be one mid-term (20%)
- \square The final exam is comprehensive (25%)
- □ There will be 13 quizzes **via Canvas** due on Sundays @ 11:59 pm MT
 - 3 quizzes where you had your lowest scores will be dropped
 - We will compute the average of your 10 highest scores
 - 10% of your course grade
 - Please no requests to reschedule or retake quizzes!

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.16

17

COMPUTER SCIENCE DEPARTMENT

19

About me

- I do research in the area of large-scale computing systems, Big Data, and GeoAl
- My research has been funded by agencies in the United States and the United Kingdom
 - These include the National Science Foundation, the Department of Homeland Security (including the Long Range program), the Environmental Protection Agency, the Department of Agriculture, the National Institute of Food & Agriculture, the National Endowment for the Humanities/Teagle and the U.K's e-Science program
 - Recipient of the National Science Foundation's CAREER Award
 - I direct the Center for eXascale Spatial Data Analytics and Computing (XSD) @
 CSU [https://spatial.colostate.edu]

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.20

My research has been deployed in Urban sustainability □ Commercial internet conferencing systems Defense applications □ Precision Agriculture □ Earthquake sciences □ Epidemic modeling Healthcare Bioinformatics □ Brain Computer Interfaces □ High energy physics Visualizations Professor: SHRIDEEP PALLICKARA COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY INTRODUCTION L1.21

21

What it takes to succeed

- □ You are required to work at least 6-8 hours per-week outside of class
 - Coding and reviewing material from class
- □ If you miss a lecture?
 - Add about 3 hours per missed lecture

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.23

23

Pitfalls to avoid?

- □ Believing that you can learn via osmosis
- Missing lectures
 - If you don't have the discipline to come to class, you are unlikely to have the discipline to catch up
- □ Procrastinating
 - Get started on the assignments early

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.24

You are not allowed to take learning opportunities away from other students

- □ If you must use a laptop or tablet (even with pencil/stylus), you should
 - Sit in the last row
 - Turn off wireless
 - Sign and turn in pledge forms
 - Use it only for taking notes
- □ When the class is in session, put away your cell-phones!
- □ Please no cross-talking when the class is in-session

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.25

25

Why attend lectures if all the slides are posted?

- \square Slides are only part of the story
 - They anchor the discussion
- Any field has a language associated with it
- People who have worked in an area for a long time speak the language
 - □ Sitting in classes helps you learn how to frame questions and responses
- □ Often there are surprising questions
 - □ Some of these may be asked by interviewers

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.26

Interactions - You can have discussions with me, the TAs, and your peers - There are two constraints to these discussions - No code can be exchanged under any circumstances - No one takes over someone else's keyboard - Bumps are to be expected along the way - But you should get over this yourself - It will help you with the next problem you encounter

27

A modern computer is a complex system

- Multiple processors and co-processors
- Main memory and Disks
- □ Keyboard, Mouse and Displays
- Network interfaces
- □ I/O devices

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.29

29

Why do we need Operating Systems?

- ☐ If every programmer had to understand how all these components work?
 - □ Software development would be arduous
- □ Managing all components and using them optimally is a challenge

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

Computers are equipped with a layer of software Called the Operating System Functionality: Provide user programs with a better, simpler, cleaner model of the computer

COLORADO STATE UNIVERSITY

■ Manage resources efficiently

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.31

Where the operating system fits in

[2/3]

- The OS runs on bare hardware in kernel mode
 - Complete access to all hardware
 - Can execute any instruction that the machine is capable of executing
- □ Provides the base for all software
 - Rest of the software runs in user-mode
 - Only a **subset** of machine instructions is available

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.33

33

Where the operating system fits in

[3/3]

- □ Users interact with applications
 - Applications execute in an environment provided by the operating system
 - And the operating system mediates access to the underlying hardware

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.34

The application context is much more than a simple abstraction on top of hardware devices

- Applications execute in a virtual environment that is more constrained (to prevent harm)
- □ More **powerful** (to mask hardware limitations), and ...
- □ More **useful** (via common services) than the underlying hardware

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.35

35

The OS as an extended machine

- □ The **architecture** of a computer includes
 - Instruction set, memory organization, I/O, and bus structure
- □ The architecture of most computers at the machine language level
 - Primitive and awkward to program especially for I/O

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

Let's look at an example of floppy disk I/O done using NEC PD765

- □ The PD765 has 16 commands
 - For reading and write data, moving the disk arm, formatting tracks, etc.
 - Specified by loading 1-9 bytes into the device register
- □ Most basic commands are for read and write
 - 13 parameters packed into 9 bytes
 - Address of disk block, number of sectors/track, inter-sector gap spacing etc.

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.37

37

But that's not the end of it ...

- When the operation is completed
 - Controller returns 23 status and error fields packed into 7 bytes
- □ You must also check the status of the motor
 - □ If it is off? Turn it on before reading or writing
 - Don't leave the motor on for too long
 - Floppy disk will wear out
 - TRADEOFF: Long start-up delay versus wearing out disk

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

Of course, the average programmer does not want to have any of this

- □ What they would like is a simple, high-level **abstraction** to deal with
- □ For a disk this would mean a collection of named files
 - □ Operations include open, read, write, close, etc.
 - **BUT NOT**
 - Whether the recording should use frequency modulation
 - The state of the motor

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.39

39

Why do processors, disks, etc. present difficult, awkward, idiosyncratic interfaces?

- □ Backward compatibility with older hardware
- □ Desire to save money
- Sometimes hardware designers don't realize (or care) how much trouble they cause!

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.40

Why abstractions are important

- □ Abstraction is the key to managing complexity
- □ Good abstractions turn a nearly impossible task into two manageable ones
 - 1 Defining and implementing abstractions
 - (2) Using abstractions to solve problem
- Example
 - □ File

Professor: Shrideep Pallickara

Computer Science Department

INTRODUCTION

L1.41

41

COMPUTER SCIENCE DEPARTMENT

43

The three roles of an Operating System

□ Referee

Isolate applications from each other

□ Illusionist

- □ Provide an abstraction of physical hardware to simplify application design
- Because applications are written to a higher level of abstraction, the OS can invisibly change the amount of resources assigned to each application

□ Glue

- Provides a set of common services to facilitate sharing among applications
- As a result, cut-and-paste works uniformly across the system; a file written by one application can be read by another

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.44

Referee: Facilitating resource sharing

- Provide orderly and controlled allocation of resources to programs competing for them
 - Processors, memories, and I/O devices

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.45

45

Referee: The OS a Resource Allocator

- □ An OS may receive numerous & conflicting requests for resources
 - Prevent errors and improper use
- □ Resources are scarce and expensive
- □ The OS allocates resources to specific programs and users
 - The allocation must be efficient and fair
 - Must increase overall system throughput
- Seemingly trivial differences in how resources are allocated can impact user-perceived performance

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMEN

INTRODUCTION

L1.46

Referee: Providing isolation

- An operating system must protect itself and other applications from programmer bugs
 - Debugging would be vastly harder if an error in one program could corrupt data structures in other applications
- □ **Fault isolation** requires restricting the behavior of applications to less than the full power of the underlying hardware

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.47

47

Referee: Facilitating Communications

- □ The flip side of isolation is the need for **communication** between different applications and different users
- In setting up boundaries, an OS must also allow those boundaries to be crossed in carefully controlled ways when the need arises!

In its role as referee, an OS is like a particularly patient kindergarten teacher. It balances needs, separates conflicts, and facilitates sharing.

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMEN

INTRODUCTION

The OS as an Illusionist: Masking Limitations

- Physical constraints limit hardware resources a computer has only a limited number of processors and a limited amount of physical memory, network bandwidth, and disk
- □ Since the OS must decide how to *divide its fixed resources* among the various applications running at each moment ...
 - A particular application can have differing amounts of resources from time to time, even when running on the same hardware

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.49

49

The OS as a Glue: Providing Common Services

- Providing a set of common, standard services to applications to simplify and standardize their design
- ☐ The OS serves as an **interoperability layer** so that both applications and devices can evolve independently
- □ OSes provide a set of standard user interface widgets
 - Facilitates a common "look and feel" to users so that frequent operations such as pull-down menus and "cut" and "paste" commands are handled consistently across applications

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMEN

INTRODUCTION

Defining Operating Systems

- □ Solves the problem of creating a usable computing system
 - Makes solving problems easier
- □ Control, allocate and mediate access to resources
- □ It is the one program that is running all the time: kernel

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.51

51

A (VERY) BRIEF HISTORY OF OPERATING SYSTEMS

COMPUTER SCIENCE DEPARTMENT

The first true digital computer was designed by Charles Babbage (1792-1871)

- □ Spent most of his life and fortune trying to build the analytical engine
- □ Never got it working properly
 - Purely mechanical
 - Technology of the day could not produce wheels, cogs, gears to the required precision
- □ Did not have an operating system

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.53

53

Babbage realized he would need software for his analytical engine

- □ Hired Ada Lovelace as the worlds first programmer
 - Daughter of British poet Lord Byron
- □ The programming language Ada® is named after her

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.54

The First Generation (1945-55) Vacuum Tubes

- □ First fully functioning digital computer built at lowa State University
 - □ Prof. John Atanasoff and grad student Clifford Berry
- □ All programming in absolute machine language
 - Also, by wiring up electrical circuits
 - Connect 1000s of cables to plug boards to control machine's basic functions
 - Operating Systems were unheard of
- Straightforward numerical calculations
 - Produce tables of sines, cosines, logarithms

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.55

55

The Second Generation (1955-1965): Transistors and Batch Systems

- Separation between designers, builders, operators, programmers, and maintenance
- Machines were called mainframes
- □ Write a program on paper, then punch it on cards
 - □ Give card deck to operator and go drink coffee
 - Operator gives output to programmer

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

The Third Generation (1965-1980) ICs and Multiprogramming

- □ Managing different product lines was expensive for manufacturers
 - Customers would start with a small machine, and then outgrow it
- □ IBM introduced the Systems/360
 - Series of software-compatible machines
 - All machines had the same instruction set
 - Programs written for one machine could run on all machines

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.57

57

The Fourth Generation (1980-Present) Personal Computers

- □ Large Scale Integration circuits (LSI)
 - Thousands of transistors on a square centimeter of silicon
- □ 1974: Intel came out with the 8080
 - □ General purpose 8-bit CPU
- □ Early 1980s IBM designed the IBM PC
 - Looked for an OS to run on the PC
 - Microsoft purchased Disk Operating System and went back to IBM with MS-DOS

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

Over the past 50 years ...

- □ The most striking aspect has been Moore's Law and comparable advances in related technologies, such as memory and disk storage
- \square The cost of processing and memory has decreased by almost 10^6 over this period; the cost of disk capacity has decreased by 10^7
 - Disk latency has improved, but at a much slower rate than disk capacity
- These relative changes have radically altered both the use of computers and the tradeoffs faced by operating system designers

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.59

59

Operating systems tend to be huge, complex and long-lived

- □ Source code of an OS like Linux or Windows?
 - Order of 5 million lines of code (for kernel)
 - 50 lines page, 1000 pages/volume = 100 volumes
- Application programs such as GUI, libraries and application software?
 - □ 10-20 times that

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.60

Why do operating systems live for a long time?

- □ Hard to write and folks are loath to throw it out
- □ Typically **evolve** over long periods of time
 - Windows 95/98/Me is one OS
 - □ Windows NT/2000/XP/Vista/7/8/10 is another
 - System V, Solaris, BSD derived from original UNIX
 - □ Linux is a fresh code base
 - Closely modeled on UNIX and highly compatible with it
 - Apple OS X based on XNU (X is not Unix) which is based on the Mach microkernel and BSD's POSIX API

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.61

61

The contents of this slide-set are based on the following references

- Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
 Prentice Hall. ISBN: 013359162X/978-0133591620 [Chapter 1]
- Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.
 John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 1]
- □ Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice, 2nd Edition. Recursive Books. ISBN: 0985673524/978-0985673529. [Chapters 1-2]
- Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall ISBN-13: 978-0-13-042411-2. [Chapter 1]

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

INTRODUCTION

L1.63