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Topics covered in today’s lecture

¨ Synchronization examples
¨ Atomic transactions
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Synchronization in Solaris

¨ Condition variables

¨ Semaphores

¨ Adaptive mutexes

¨ Reader-writer locks

¨ Turnstiles
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Synchronization in Solaris: 
Adaptive mutex

¨ Starts as a standard semaphore implemented as spinlock

¨ On SMP systems if data is locked and in use?
¤ If lock held by thread on another CPU

n Spin waiting for lock to be available

¤ If thread holding the lock is not in the run state
n Block until awakened by release of the lock
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Adaptive mutex:
On a single processor system

¨ Only one thread can run at a time

¨ So, thread sleeps (instead of spinning) when a lock is 
encountered
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Adaptive mutex is used only for short code segments

¨ Less than a few hundred instructions
¤Spinlocks inefficient for code segments larger than that

¨ Cheaper to put a thread to sleep and awaken it
¤Busy waiting in the spinlock is expensive

¨ Longer code segments?
¤Condition variables and semaphores used
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Reader-writer locks

¨ Used to protect data accessed frequently
¤Usually accessed in a read-only manner

¨ Multiple threads can read data concurrently
¤Unlike binary semaphores that serialize access to the data

¨ Relatively expensive to implement
¤Used only on long sections of code
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Solaris: Turnstiles

¨ Queue structure containing threads blocked on a lock

¨ Used to order threads waiting to acquire adaptive mutex or 
reader-writer lock

¨ Each kernel thread has its own turnstile
¤As opposed to every synchronized object
¤ Thread can be blocked only on one object at a time
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Solaris: Turnstiles

¨ Turnstile for the first thread to block on synchronized object
¤Becomes turnstile for the object itself
¤Subsequent threads blocking on lock are added to this turnstile

¨ When this first thread releases its lock? 
¤ It gains a new turnstile from the list of free turnstiles maintained by 

kernel
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Turnstiles are organized according  to the priority 
inheritance protocol

¨ If the thread is holding a lock on which a higher priority thread 
is blocked?
¤Will temporarily inherit priority of higher priority thread
¤Revert back to original priority after releasing the lock
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Linux: Prior to 2.6, Linux was a nonpreemptive kernel

¨ Provides spinlocks and semaphores

Single processor Multiple processors

Disable kernel preemption Acquire spinlock

Enable kernel preemption Release spinlock

17 December 2003 - Linux 2.6.0 was released (5,929,913 lines of code)
4 January 2011 - Linux 2.6.37 was released (13,996,612 lines of code)
Version:  4.10.1 [stable version]  (~18,000,000 lines of code)
Version 6.1 Feb 2023 (~35,550,0000 lines of code)
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Kernel is not preemptible if a kernel-mode task is 
holding a lock

¨ Each task has a thread-info structure
¤Counter preempt_count indicates number of locks being held by 

task

¤preempt_count incremented when lock acquired
n Decremented when lock released

¤ If is preempt_count > 0; not safe to preempt
n OK otherwise; if no preempt_disable() calls pending
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Linux: Other mechanisms

¨ Atomic integers atomic_t
¤ All math operations using atomic integers are performed without interruption
¤ E.g.: set, add, subtract, increment, decrement

¨ Mutex locks
¤ mutex_lock(): Prior to entering critical section 
¤ mutex_unlock(): After exiting critical section

¤ If lock is unavailable, task calling mutex_lock() is put to sleep
n Awakened when another task calls  mutex_unlock()
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Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic 
execution
¤As one uninterruptible unit

¨ Also, important to ensure that critical section forms a single 
logical unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g., transfer of funds

n Credit one account and debit the other
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Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤Despite the possibility of failures
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Storage system hierarchy based on speed, cost, size 
and volatility

Registers
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Magnetic Disk
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A transaction is a program unit that 
accesses/updates data items on disk

¨ Simply a sequence of read and write operations
¤ Terminated by commit or abort

¨ Commit: Successful transaction termination

¨ Abort: Unsuccessful due to 
¤ Logical error or system failure
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Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored 
¤ To what it was before transaction started executing
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Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to 
various accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort, etc.
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Actual update cannot take place prior to the logging

¨ Prior to write(X) operation
¤ Log records for X should be written to stable storage

¨ Two physical writes for every logical write
¤More storage needed

¨ Functionality worth the price: 
¤Data that is extremely important 
¤ For fast failure recovery
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Populating entries in the log

¨ Before transaction Ti starts execution
¤Record <Ti starts> written to the log

¨ Any write by Ti is preceded by writing to the log

¨ When Ti commits  
¤Record <Ti commits> written to log
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The system can handle any failure without loss of 
information: Log

¤ undo(Ti)
n Restores value of all data updated by Ti to old values

¤ redo(Ti)
n Sets value of all data updated by Ti to new values

¤ undo(Ti) and redo(Ti)
n Are idempotent
n Multiple executions have the same result as 1 execution
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If system failure occurs restore state by consulting 
the log

¨ Determine which transactions need to be undone; and which 
need to be redone

¨ Tiis undone if log 
¤Contains <Ti starts> but no <Ti commits> record

¨ Tiis redone if log 
¤Contains both <Ti starts> and <Ti commits> 
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Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤Recovery takes longer

n Though no harm done by redoing (idempotency)
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In addition to write-ahead logging,  periodically 
perform checkpoints

¨ Output the following to stable storage 
¤All log records residing in main memory
¤All modified data residing in main memory
¤A log record <checkpoint>

¨ The <checkpoint> allows a system to streamline recovery 
procedure
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Implications of the checkpoint record

¨ Ti committed prior to checkpoint
¤<Ti commits> appears before <checkpoint>
¤Modifications made by Ti must have been written to stable storage

n Prior to the checkpoint or
n As part of the checkpoint

¨ At recovery no need to redo such a transaction
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Refining the recovery algorithm

¨ Search the log backward for first checkpoint record.
¤ Find transactions Ti following the last checkpoint
¤redo and undo operations applied only to these transactions
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Looking at the log to determine which one to redo 
and which one to undo

<T1 starts>
<T1 … write record>
<T1 aborts>

<T2 starts>
<T2 … write record>
<T2 commits>

<checkpoint>
<T3 starts>
<T3 … write record>
….
<checkpoint>
<T4 starts>
<T4 … write record>
<T4 commits>

<T5 starts>
<T5 ..write record>

T4 will be redone

T5 will be undone

? Transactions?
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Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤Maintained by executing each transaction within a critical section
n Too restrictive

¨ Allow transactions to overlap while maintaining serializability
¤Concurrency control algorithms 
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Serializability

¨ Serial schedule: Each transaction executes 
atomically
    n! schedules for n transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)
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Non-serial schedule: 
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule
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Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule
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Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤By a series of swaps of non-conflicting operations
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Locking protocol governs how locks are acquired 
and released

¨ There are different modes in which data can be locked
¤A transaction acquires a lock on a data item in different modes

¨ Shared mode locks
¤Ti can read, but not write, data item Q 

¨ Exclusive mode locks
¤Ti can read and write data item Q  
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Transactions must request locks on data items in the 
right mode

¨ To access data item Q;  Ti must first lock it
¤Wait if Q is locked in the exclusive mode
¤ If Ti requests a shared-lock on Q

n Obtain lock if Q is not locked in the exclusive mode

¨ Ti must hold lock on data item as long as it accesses it 
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Two-phase locking protocol: Locks and unlocks take 
place in two phases

¨ Transaction’s growing phase:
¤Obtain locks
¤Cannot release any lock

¨ Transaction’s shrinking phase
¤Can release locks
¤Cannot obtain any new locks
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Two-phase locking protocol:
Conflict serializability

¨ Conflicts occur when 2 transactions access same data item; and 
1 of them is a write

¨ A transaction acquires locks serially; without releasing them 
during the acquire phase
¤Other transactions must wait for first transaction to start releasing locks

¨ Deadlocks may occur
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Order of conflicting transactions

¨ Two-phase locking
¤Determined at execution time

¨ How about selecting this order in advance?
¤Timestamp based protocols
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Timestamp based protocols

¨ For each Ti there is a fixed timestamp
¤Denoted TS(Ti)
¤Assigned before Ti starts execution

¨ For a later Tj ;   TS(Ti) < TS(Tj)

¨ Schedule must be equivalent to schedule in which Ti appears 
before Tj.
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Timestamp based locking

¨ Protocol ensures there will be no deadlock
¤No transaction ever waits!

¨ Conflict serializabilty
¤Conflicting operations are processed in timestamp order
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Each data item Q has two values

¨ W-timestamp(Q)

¤ Largest timestamp of any transaction that successfully executed 
write()

¨ R-timestamp(Q)
¤ Largest timestamp of any transaction that successfully executed 
read()
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Transaction issues a read(Q)

¨ If TS(Ti) < W-timestamp(Q)
¤Needs value that was already overwritten
¤ The read is rejected and Ti is rolled back

¨ TS(Ti) >= W-timestamp(Q)
¤Operation is executed
¤ R-timestamp(Q)= max(TS(Ti),R-timestamp(Q))

The key idea here is that when a transaction executes 
none of the data items must be from the future.
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Transaction issues a write(Q)

¨ If TS(Ti) < R-timestamp(Q)
¤Value of Q produced by Ti needed previously 

n Ti assumed that this value would never be produced

¤ The write is rejected and Ti is rolled back

¨ If TS(Ti) < W-timestamp(Q)
¤ Trying to write an obsolete value of Q 
¤ The write is rejected and Ti is rolled back
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What happens when a transaction is rolled back?

¨ Transactions Ti is assigned a new timestamp
¤Restart  
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Schedule using the timestamp protocol:

T2
read(B)

T3

read(B)
write(B)

read(A)

read(A)
write(A)

Timestamps are assigned to transactions before 
the start of the first instruction  TS(T2) < TS(T3) 
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The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]
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