
SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L12.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[ATOMIC TRANSACTIONS]

Shrideep Pallickara
Computer Science

Colorado State University

1

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.2

Topics covered in today’s lecture

¨ Synchronization examples
¨ Atomic transactions

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L12.3COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZATION EXAMPLES

3

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.4

Synchronization in Solaris

¨ Condition variables

¨ Semaphores

¨ Adaptive mutexes

¨ Reader-writer locks

¨ Turnstiles

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.5

Synchronization in Solaris:
Adaptive mutex

¨ Starts as a standard semaphore implemented as spinlock

¨ On SMP systems if data is locked and in use?
¤ If lock held by thread on another CPU

n Spin waiting for lock to be available

¤ If thread holding the lock is not in the run state
n Block until awakened by release of the lock

5

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.6

Adaptive mutex:
On a single processor system

¨ Only one thread can run at a time

¨ So, thread sleeps (instead of spinning) when a lock is
encountered

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.7

Adaptive mutex is used only for short code segments

¨ Less than a few hundred instructions
¤Spinlocks inefficient for code segments larger than that

¨ Cheaper to put a thread to sleep and awaken it
¤Busy waiting in the spinlock is expensive

¨ Longer code segments?
¤Condition variables and semaphores used

7

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.8

Reader-writer locks

¨ Used to protect data accessed frequently
¤Usually accessed in a read-only manner

¨ Multiple threads can read data concurrently
¤Unlike binary semaphores that serialize access to the data

¨ Relatively expensive to implement
¤Used only on long sections of code

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.9

Solaris: Turnstiles

¨ Queue structure containing threads blocked on a lock

¨ Used to order threads waiting to acquire adaptive mutex or
reader-writer lock

¨ Each kernel thread has its own turnstile
¤As opposed to every synchronized object
¤ Thread can be blocked only on one object at a time

9

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.10

Solaris: Turnstiles

¨ Turnstile for the first thread to block on synchronized object
¤Becomes turnstile for the object itself
¤Subsequent threads blocking on lock are added to this turnstile

¨ When this first thread releases its lock?
¤ It gains a new turnstile from the list of free turnstiles maintained by

kernel

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.11

Turnstiles are organized according to the priority
inheritance protocol

¨ If the thread is holding a lock on which a higher priority thread
is blocked?
¤Will temporarily inherit priority of higher priority thread
¤Revert back to original priority after releasing the lock

11

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.12

Linux: Prior to 2.6, Linux was a nonpreemptive kernel

¨ Provides spinlocks and semaphores

Single processor Multiple processors

Disable kernel preemption Acquire spinlock

Enable kernel preemption Release spinlock

17 December 2003 - Linux 2.6.0 was released (5,929,913 lines of code)
4 January 2011 - Linux 2.6.37 was released (13,996,612 lines of code)
Version: 4.10.1 [stable version] (~18,000,000 lines of code)
Version 6.1 Feb 2023 (~35,550,0000 lines of code)

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.13

Kernel is not preemptible if a kernel-mode task is
holding a lock

¨ Each task has a thread-info structure
¤Counter preempt_count indicates number of locks being held by

task

¤preempt_count incremented when lock acquired
n Decremented when lock released

¤ If is preempt_count > 0; not safe to preempt
n OK otherwise; if no preempt_disable() calls pending

13

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.14

Linux: Other mechanisms

¨ Atomic integers atomic_t
¤ All math operations using atomic integers are performed without interruption
¤ E.g.: set, add, subtract, increment, decrement

¨ Mutex locks
¤ mutex_lock(): Prior to entering critical section
¤ mutex_unlock(): After exiting critical section

¤ If lock is unavailable, task calling mutex_lock() is put to sleep
n Awakened when another task calls mutex_unlock()

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L12.15COMPUTER SCIENCE DEPARTMENT

ATOMIC TRANSACTIONS

15

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.16

Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic
execution
¤As one uninterruptible unit

¨ Also, important to ensure that critical section forms a single
logical unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g., transfer of funds

n Credit one account and debit the other

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.17

Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤Despite the possibility of failures

17

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.18

Storage system hierarchy based on speed, cost, size
and volatility

Registers

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tapes

Co
st/

bi
t i

nc
re

as
es

Access times increase

Volatile

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.19

A transaction is a program unit that
accesses/updates data items on disk

¨ Simply a sequence of read and write operations
¤ Terminated by commit or abort

¨ Commit: Successful transaction termination

¨ Abort: Unsuccessful due to
¤ Logical error or system failure

19

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.20

Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored
¤ To what it was before transaction started executing

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.21

Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to
various accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort, etc.

21

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.22

Actual update cannot take place prior to the logging

¨ Prior to write(X) operation
¤ Log records for X should be written to stable storage

¨ Two physical writes for every logical write
¤More storage needed

¨ Functionality worth the price:
¤Data that is extremely important
¤ For fast failure recovery

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.23

Populating entries in the log

¨ Before transaction Ti starts execution
¤Record <Ti starts> written to the log

¨ Any write by Ti is preceded by writing to the log

¨ When Ti commits
¤Record <Ti commits> written to log

23

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.24

The system can handle any failure without loss of
information: Log

¤ undo(Ti)
n Restores value of all data updated by Ti to old values

¤ redo(Ti)
n Sets value of all data updated by Ti to new values

¤ undo(Ti) and redo(Ti)
n Are idempotent
n Multiple executions have the same result as 1 execution

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.25

If system failure occurs restore state by consulting
the log

¨ Determine which transactions need to be undone; and which
need to be redone

¨ Tiis undone if log
¤Contains <Ti starts> but no <Ti commits> record

¨ Tiis redone if log
¤Contains both <Ti starts> and <Ti commits>

25

L12.26COMPUTER SCIENCE DEPARTMENT

CHECKPOINTING

L15.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.27

Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤Recovery takes longer

n Though no harm done by redoing (idempotency)

27

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.28

In addition to write-ahead logging, periodically
perform checkpoints

¨ Output the following to stable storage
¤All log records residing in main memory
¤All modified data residing in main memory
¤A log record <checkpoint>

¨ The <checkpoint> allows a system to streamline recovery
procedure

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.29

Implications of the checkpoint record

¨ Ti committed prior to checkpoint
¤<Ti commits> appears before <checkpoint>
¤Modifications made by Ti must have been written to stable storage

n Prior to the checkpoint or
n As part of the checkpoint

¨ At recovery no need to redo such a transaction

29

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.30

Refining the recovery algorithm

¨ Search the log backward for first checkpoint record.
¤ Find transactions Ti following the last checkpoint
¤redo and undo operations applied only to these transactions

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.31

Looking at the log to determine which one to redo
and which one to undo

<T1 starts>
<T1 … write record>
<T1 aborts>

<T2 starts>
<T2 … write record>
<T2 commits>

<checkpoint>
<T3 starts>
<T3 … write record>
….
<checkpoint>
<T4 starts>
<T4 … write record>
<T4 commits>

<T5 starts>
<T5 ..write record>

T4 will be redone

T5 will be undone

? Transactions?

31

L12.32COMPUTER SCIENCE DEPARTMENT

CONCURRENT ATOMIC TRANSACTIONS

L15.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.33

Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤Maintained by executing each transaction within a critical section
n Too restrictive

¨ Allow transactions to overlap while maintaining serializability
¤Concurrency control algorithms

33

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.34

Serializability

¨ Serial schedule: Each transaction executes
atomically
 n! schedules for n transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.35

Non-serial schedule:
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule

35

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.36

Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.37

Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤By a series of swaps of non-conflicting operations

37

L12.38COMPUTER SCIENCE DEPARTMENT

LOCKING PROTOCOLS

Governs how locks can be acquired and released

L15.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.39

Locking protocol governs how locks are acquired
and released

¨ There are different modes in which data can be locked
¤A transaction acquires a lock on a data item in different modes

¨ Shared mode locks
¤Ti can read, but not write, data item Q

¨ Exclusive mode locks
¤Ti can read and write data item Q

39

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.40

Transactions must request locks on data items in the
right mode

¨ To access data item Q; Ti must first lock it
¤Wait if Q is locked in the exclusive mode
¤ If Ti requests a shared-lock on Q

n Obtain lock if Q is not locked in the exclusive mode

¨ Ti must hold lock on data item as long as it accesses it

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.41

Two-phase locking protocol: Locks and unlocks take
place in two phases

¨ Transaction’s growing phase:
¤Obtain locks
¤Cannot release any lock

¨ Transaction’s shrinking phase
¤Can release locks
¤Cannot obtain any new locks

41

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.42

Two-phase locking protocol:
Conflict serializability

¨ Conflicts occur when 2 transactions access same data item; and
1 of them is a write

¨ A transaction acquires locks serially; without releasing them
during the acquire phase
¤Other transactions must wait for first transaction to start releasing locks

¨ Deadlocks may occur

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.43

Order of conflicting transactions

¨ Two-phase locking
¤Determined at execution time

¨ How about selecting this order in advance?
¤Timestamp based protocols

43

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.44

Timestamp based protocols

¨ For each Ti there is a fixed timestamp
¤Denoted TS(Ti)
¤Assigned before Ti starts execution

¨ For a later Tj ; TS(Ti) < TS(Tj)

¨ Schedule must be equivalent to schedule in which Ti appears
before Tj.

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.45

Timestamp based locking

¨ Protocol ensures there will be no deadlock
¤No transaction ever waits!

¨ Conflict serializabilty
¤Conflicting operations are processed in timestamp order

45

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.46

Each data item Q has two values

¨ W-timestamp(Q)

¤ Largest timestamp of any transaction that successfully executed
write()

¨ R-timestamp(Q)
¤ Largest timestamp of any transaction that successfully executed
read()

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.47

Transaction issues a read(Q)

¨ If TS(Ti) < W-timestamp(Q)
¤Needs value that was already overwritten
¤ The read is rejected and Ti is rolled back

¨ TS(Ti) >= W-timestamp(Q)
¤Operation is executed
¤ R-timestamp(Q)= max(TS(Ti),R-timestamp(Q))

The key idea here is that when a transaction executes
none of the data items must be from the future.

47

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.48

Transaction issues a write(Q)

¨ If TS(Ti) < R-timestamp(Q)
¤Value of Q produced by Ti needed previously

n Ti assumed that this value would never be produced

¤ The write is rejected and Ti is rolled back

¨ If TS(Ti) < W-timestamp(Q)
¤ Trying to write an obsolete value of Q
¤ The write is rejected and Ti is rolled back

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.49

What happens when a transaction is rolled back?

¨ Transactions Ti is assigned a new timestamp
¤Restart

49

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.50

Schedule using the timestamp protocol:

T2
read(B)

T3

read(B)
write(B)

read(A)

read(A)
write(A)

Timestamps are assigned to transactions before
the start of the first instruction TS(T2) < TS(T3)

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION & TRANSACTIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.51

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

51

