

Thilina Buddhika*, Ryan Stern*, Kira Interference Alleviation for Low-late and Distributed Systems. Vol. 28(12) p	Lindburg*, Kathleen Ericson*, and ncy, High-throughput Processing c op 3553-3569. 2017.	l Shrideep Pallickara. Online Sche of Data Streams. IEEE Transactions	duling and on Parallel
COLORADO STATE UNIVERSITY	Professor: Shrideep Pallickara Computer Science Department	DEADLOCKS	L16.3

4

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

CFS maps the nice value of each process to a weight								
statio	con	st ·	int pri	o to we	ight[40]] = {		
/*	-20	*/	88761,	71755,	56483,	46273,	36291,	
/*	-15	*/	29154,	23254,	18705,	14949,	11916,	
/*	-10	*/	9548,	7620,	6100,	4904,	3906,	
/*	-5	*/	3121,	2501,	1991,	1586,	1277,	
/*	0	*/	1024,	820,	655,	526,	423,	
/+	- 5	*/	335,	272,	215,	172,	137,	
/*	10	*/	110,	87,	70,	56,	45,	
/*	15	*/	36,	29,	23,	18,	15,	
};								
COLORADO STATE UNIVERSITY Professor: SHRIDEEP PALLICKARA COMPUTER SCIENCE DEPARTMENT DEADLOCKS							L16.17	

SLIDES CREATED BY: SHRIDEEP PALLICKARA

29

33

Deadlock: Forr	nal Definition							
A set of processes is an event that only ar	A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause							
 Because all processes are waiting, none of them can cause events to wake any other member of the set Processes continue to wait forever 								
COLORADO STATE UNIVERSITY	Professor: Shrideep Pallickara Computer Science Department	DEADLOCKS	L16.45					

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

