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Frequently asked questions from the previous class 
survey

¨ Is starvation still a problem in modern, multicore systems?

¨ Where is the scheduler?
¨ What does overhead refer to?
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Thilina Buddhika*, Ryan Stern*, Kira Lindburg*, Kathleen Ericson*, and Shrideep Pallickara. Online Scheduling and
 Interference Alleviation for Low-latency, High-throughput Processing of Data Streams. IEEE Transactions on Parallel 
and Distributed Systems. Vol. 28(12) pp 3553-3569. 2017.

3

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.4

Topics covered in today’s lecture

¨ Wrap-up of CPU Scheduling Algorithms

¤ CFS

¤ Idle Threads in Windows

¨ Deadlocks

¨ Deadlock characterization

¨ Deadlock vs Starvation
¨ Resource allocation graph
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LINUX COMPLETELY FAIR SCHEDULER 
(CFS)

Magicians protect their secrets not because the secrets are large and 
important, but because they are so small and trivial. The wonderful effects 
created on stage are often the result of a secret so absurd that the 
magician would be embarrassed to admit that that was how it was done.

Christopher Priest, The Prestige
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Linux Completely Fair Scheduler (CFS)

¨ CFS accomplishes it proportional or fair-share goals differently from 
lottery scheduling
¤ Does so in a highly efficient and scalable fashion

¨ To achieve its efficiency goals, CFS aims to spend very little time 
making scheduling decisions through: 
¤ Its inherent design
¤ Its clever use of data structures well-suited to the task
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CFS: Basic Operation

¨ Whereas most schedulers are based around the concept of a fixed 
time slice, CFS operates a bit differently

¨  GOAL: Fairly divide a CPU evenly among all competing processes
¤ Does so through a simple counting-based technique known as virtual 

runtime (vruntime)
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vruntime

¨ As each process runs, it accumulates vruntime

¨ In the most basic case, each process’s vruntime increases at the 
same rate, in proportion with physical (real) time 

¨ When a scheduling decision occurs, CFS will pick the process with the 
lowest vruntime to run next
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How does the scheduler know when to stop the 
currently running process, and run the next one?

¨ Trade-off Space: 
¤ If CFS switches too often?

n Fairness is increased: CFS will ensure that each process receives its share of CPU 
even over miniscule time windows

n But at the cost of performance (too much context switching)

¤ If CFS switches less often?
n Performance is increased (reduced context switching) 

n But at the cost of near-term fairness 
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CFS manages this trade-off through various control 
parameters

¨ sched_latency
¤ CFS uses this value to determine how long one process should run before 

considering a switch 
n Effectively determining its time slice but in a dynamic fashion 

¨ A typical sched_latency value is 48 (milliseconds)
¤ CFS divides this value by the number (n) of processes running on the CPU to 

determine the time slice for a process
n And thus, ensures that over this period of time, CFS will be completely fair
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For example, if there are n = 4 processes running

¨ CFS divides the value of sched_latency by n to arrive at a per-
process time slice of 12 ms 

¨ CFS then schedules the first job and runs it until it has used 12 ms of 
(virtual) runtime
¤ Then checks to see if there is a job with lower vruntime to run instead 
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But what if there are “too many” processes running?

¨ Wouldn’t that lead to too small of a time slice, and thus too many context 
switches? 
¤ Yes!

¨ To address this issue, CFS adds another parameter, min_granularity, 
which is usually set to a value like 6 ms
¤ CFS will never set the time slice of process to less than this value, ensuring that 

not too much time is spent in scheduling overhead
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For example, if there are ten processes running

¨ Our original calculation would divide sched_latency by ten to 
determine the time slice (result: 4.8 ms)
¤ However, because of min granularity, CFS will set the time slice of each 

process to 6 ms instead

¨ Although CFS won’t (quite) be perfectly fair over the target scheduling 
latency (sched_latency) of 48 ms, it will be close
¤ While still achieving high CPU efficiency
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CFS utilizes a periodic timer interrupt

¨ CFS can only make decisions at fixed time intervals

¨ This interrupt goes off frequently (e.g., every 1 ms)
¤ Giving CFS a chance to wake up and determine if the current job has 

reached the end of its run 

¨ If a job has a time slice that is not a perfect multiple of the timer 
interrupt interval? 
¤ That is OK 
¤ CFS tracks vruntime precisely, which means that over the long haul, it will 

eventually approximate ideal sharing of the CPU
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CFS: WEIGHTING OR NICENESS

15

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.16

Weighting (Niceness) 

¨ CFS also enables controls over process priority to give some processes 
a higher share of the CPU. 
¤ It does this not with tickets, but through a classic UNIX mechanism known as 

the nice level of a process

¨ The nice parameter can be set anywhere from −20 to +19 for a 
process, with a default of 0 
¤ Positive nice values imply lower priority and negative values imply higher 

priority
¤ When you’re too nice, you just don’t get as much (scheduling) attention, alas!
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CFS maps the nice value of each process to a weight 
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These weights allow us to compute the effective time 
slice of each process

¨ As we did before, but now accounting for their priority differences
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Example: Assume there are two jobs A and B

¨ A has a higher priority by assigning it a nice value of −5:

¨ B has the default priority (nice value equal to 0)

¨ Note: weightA (from the table) is 3121, whereas weightB is 1024 

¨ A’s time-slice:  3121/[3121+ 1024] ~ ¾
¨ B’s time-slice: 1024/[3121+ 1024] ~ ¼ 
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The way CFS calculates vruntime must also be 
adapted

¨ The new formula, which takes the actual run time that process i has 
accrued (runtimei) and scales it inversely by the weight of the 
process
¤ By dividing the default weight of 1024 (weight0) by its weight, weighti 
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EFFICIENT DATA STRUCTURES

N.B: When a scheduling decision occurs, CFS will pick the 
process with the lowest vruntime to run next
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Using efficient data structures

¨ Knowing which data structure to use when is a hallmark of good design

¨ When picking a data structure for a system you are building, carefully 
consider its access patterns and its frequency of usage
¤ By understanding these, you will be able to implement the right structure for 

the task at hand
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Schedulers and data structures

¨ When the scheduler has to find the next job to run, it should do so as 
quickly as possible

¨ Simple data structures like lists don’t scale: modern systems sometimes 
comprise1000s of processes
¤ Searching through a long-list every so many milliseconds is wasteful
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CFS addresses this by keeping processes in a red-
black tree 

¨ A red-black tree is one of many types of balanced trees; in contrast 
to a simple binary tree

¤ Binary trees can degenerate to list-like performance under worst-case 
insertion patterns

¤ Balanced trees do a little extra work to maintain low depths, and thus 
ensure that operations are logarithmic (and not linear) in time

¤ Worst case search, insert, delete: O(log n)
n Amortized: O(log n), O(1), O(1)
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CFS and red-black trees

¨ Processes are ordered in the tree by vruntime, and most operations 
(such as insertion and deletion) are logarithmic in time, i.e., O(log n)
¤ When n is in the thousands, logarithmic is noticeably more efficient than 

linear

¨ CFS does not keep all process in this structure; rather, only running (or 
runnable/ready) processes 

¨ If a process goes to sleep (say, waiting on an I/O to complete, or for a 
network packet to arrive), it is removed from the tree and kept track 
of elsewhere
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DEALING WITH I/O AND SLEEPING 
PROCESSES 
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Dealing With I/O And Sleeping Processes [1/2] 

¨ One problem with picking the lowest vruntime to run next arises with 
jobs that have gone to sleep for a long period of time

¨ Imagine two processes, A and B 
¤ A runs continuously, and B which has gone to sleep for a long period of time 

(say, 10 seconds)

¤ When B wakes up, its vruntime will be 10 seconds behind A’s

¤ Thus (if we’re not careful), B will now monopolize the CPU for the next 10 
seconds while it catches up, effectively starving A 
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Dealing With I/O And Sleeping Processes [1/2] 

¨ CFS handles this case by altering the vruntime of a job when it 
wakes up

¨ Specifically, CFS sets the vruntime of that job to the minimum value 
found in the tree 
¤ In this way, CFS avoids starvation, but not without a cost

n Jobs that sleep for short periods of time frequently do not ever get their fair share 
of the CPU 
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Dispatcher in Windows XP

¨ Use a queue for each scheduling priority

¨ Traverse the queues from highest to lowest
¤ Until it finds a thread that is ready to run

¨ If no ready thread is found?
¤ Dispatcher will execute a special thread: idle thread
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Idle thread in Windows

¨ Primary purpose is to eliminate a special case
¤ Cases when no threads are runnable or ready
¤ Idle threads are always in a ready state

n If not already running

¨ Scheduler can always find a thread to execute

¨ If there are other eligible threads?
¤ Scheduler will never select the idle thread
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Idle threads in Windows

¨ Windows thread priorities go from 0-31
¤ Idle thread priority can be thought of as −1

¨ Threads in the system idle process can also implement CPU power 
saving
¤ On x86 processors, run a loop of halt instructions
¤ Causes CPU to turn off internal components

n Until an interrupt request arrives

¤ Recent versions also reduce the CPU clock speed
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Time consumed by the idle process

¨ It may seem that the idle process is monopolizing the CPU
¤ It is merely acting as a placeholder during free time
¤ Proof that no other process wants that CPU time
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DEADLOCKS 

A waiting process is never again able to change state
 It is waiting for resources held by other processes

Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs
To terrify, to find a thing
He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams
He wonders what it's all about

Telescope, Cage the Elephant
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What we will look at …

Deadlocks

System Model

Characterization

Requirements

Avoidance

Detection & 
Recovery

Prevention

Why?
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For many applications, processes need exclusive 
accesses to multiple resources

¨ Process A: Asks for scanner and is granted it

¨ Process B: Asks CD recorder first and is granted it
¨ Process A: Now asks for CD recorder

¨ Process B: Now asks for Scanner 

¨ Both processes are blocked and will remain so forever!
¤ Deadlock
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Other deadlock situations

¨ Distributed systems involving multiple machines

¨ Database systems
¤ Process 1 locks record R1
¤ Process 2 locks record R2
¤ Then, processes 1 and 2 try to lock each other’s record

n Deadlock

¨ Deadlocks can occur in hardware or software resources 
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Resource Deadlocks

¨ Major class of deadlocks involves resources
¤ Can occur when processes have been granted access to devices, data 

records, files, etc.
¤ Other classes of deadlocks: communication deadlocks, two-phase locking

¨ Related concepts
¤ Livelocks and starvation
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Preemptable resources

¨ Can be taken away from process owning it with no ill effects

¨ Example: Memory
¤ Process B’s memory can be taken away and given to process A

n Swap B from memory, write contents to backing store, swap A in and let it use the 
memory
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Non-preemptable resources

¨ Cannot be taken away from a process without causing the process to 
fail

¨ If a process has started to burn a CD
¤ Taking the CD-recorder away from it and giving it to another process?

n Garbled CD
n CD recorders are not preemptable at an arbitrary moment

¨ In general, deadlocks involve non-preemptable resources
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Some notes on deadlocks

¨ The OS typically does not provide deadlock prevention facilities

¨ Programmers are responsible for designing deadlock free programs
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System model

¨ Finite number of resources
¤ Distributed among competing processes

¨ Resources are partitioned into different types
¤ Each type has a number of identical instances
¤ Resource type examples:

n Memory space, files, I/O devices
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A process must utilize resources in a sequence

¨ Request
¤ Requesting resource must wait until it can acquire resource
¤ request(), open(), allocate()

¨ Use
¤ Operate on the resource

¨ Release
¤ release(),  close(),  free()

43

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.44

For kernel managed resources, the OS maintains a 
system resource table

¨ Is the resource free? 
¤ Record process that the resource is allocated to

¨ Is the resource allocated?
¤ Add to queue of processes waiting for resource

¨ For resources not managed by the OS
¤ Use wait() and signal() on semaphores

44



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.45

Deadlock: Formal Definition

¨ A set of processes is deadlocked if  each process in the set is waiting for 
an event that only another process in the set can cause

¨ Because all processes are waiting, none of them can cause events to 
wake any other member of the set
¤ Processes continue to wait forever
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DEADLOCK CHARACTERIZATION  
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Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources 

n Which are currently held by other processes
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Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0

¤ Implies hold-and-wait
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DEADLOCKS VS. STARVATION
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Deadlocks vs. Starvation                          [1/2]

¨ Deadlocks and starvation are both liveness concerns

¨ Starvation
¤ Task fails to make progress for an indefinite period of time

¨ Deadlock is a form of starvation, BUT with a stronger condition
¤ A group of tasks forms a cycle where none of the tasks makes progress

n Because each task is waiting for some other task in the cycle to take action
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Deadlocks vs. Starvation                          [2/2]

¨ Deadlock implies starvation (literally for the dining philosophers 
problem) 

¨ Starvation DOES NOT imply deadlock

51

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.52

Also …

¨ Just because a system can suffer deadlock or starvation does not mean 
that it always will
¤ A system is subject to starvation if a task could starve in some circumstances
¤ A system is subject to deadlock if a group of tasks could deadlock in some 

circumstances

¨ Circumstances impact whether a deadlock or starvation may occur
¤ Choices made by scheduler, number of tasks, workload or sequence of 

requests, which tasks win races to acquire locks, order of task activations, etc.
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RESOURCE ALLOCATION GRAPH
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Resource allocation graph

¨ Used to describe deadlocks precisely

¨ Consists of a set of vertices and edges

¨ Two different sets of nodes
§ P:  the set of all active processes in system
§ R:  the set of all resource types in the system
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Directed edges

¨ Request edge
¤ Pi has requested an instance of resource type Rj
¤ Directed edge from process Pi to resource Rj
¤ Denoted Pi à Rj
¤ Currently waiting for that resource

¨ Assignment edge
¤ Instance of resource Rj assigned to process Pi
¤ Directed edge from resource Rj to process Pi
¤ Denoted Rj à Pi
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Representation of Processes and Resources

Processes Resources 

A resource type may have 
multiple instances 
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R3R1

R2

Resource Allocation Graph example

P1 P2 P3

R4 Request Edge
Assignment Edge
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Determining deadlocks 

¨ If the graph contains no cycles?
¤ No process in the system is deadlocked

¨ If there is a cycle in the graph?
¤ If each resource type has exactly one instance

n Deadlock has occurred

¤ If each resource type has multiple instances
n A deadlock may have occurred
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Resource Allocation Graph:
Deadlock example

P1 P2 P3

R1

R2

R3

R4

P1àR1àP2àR3àP3àR2àP1
P2àR3àP3àR2àP2

Two cycles
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Resource Allocation Graph:
Cycle but not a deadlock

P1 P3

R1

R2

P1àR1àP3àR2àP1

P4

P2

P4 may release instance of R2  
allocate to P3 and break cycle
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Resource Allocation Graphs and Deadlocks

¨ If the graph does not have a cycle
¤ No deadlock

¨ If the graph does have a cycle
¤ System may or may not be deadlocked
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Methods for handling deadlocks

¨ Use protocol to prevent or avoid deadlocks
¤ Ensure system never enters a deadlocked state

¨ Allow system to enter deadlocked state; BUT
¤ Detect it and recover

¨ Ignore problem, pretend that deadlocks never occur
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Problems with undetected deadlocks

¨ Resources held by processes that cannot run

¨ More and more processes enter deadlocked state
¤ When they request more resources

¨ Deterioration in system performance
¤ Requires restart
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When is ignoring the problem viable?

¨ When they occur infrequently (once per year)
¤ Ignoring is the cheaper solution
¤ Prevention, avoidance, detection and recovery

n Need to run constantly
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