
SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[SCHEDULING ALGORITHMS & DEADLOCKS]

Shrideep Pallickara
Computer Science

Colorado State University

1

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.2

Frequently asked questions from the previous class
survey

¨ Is starvation still a problem in modern, multicore systems?

¨ Where is the scheduler?
¨ What does overhead refer to?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.3

Thilina Buddhika*, Ryan Stern*, Kira Lindburg*, Kathleen Ericson*, and Shrideep Pallickara. Online Scheduling and
 Interference Alleviation for Low-latency, High-throughput Processing of Data Streams. IEEE Transactions on Parallel
and Distributed Systems. Vol. 28(12) pp 3553-3569. 2017.

3

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.4

Topics covered in today’s lecture

¨ Wrap-up of CPU Scheduling Algorithms

¤ CFS

¤ Idle Threads in Windows

¨ Deadlocks

¨ Deadlock characterization

¨ Deadlock vs Starvation
¨ Resource allocation graph

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.5COMPUTER SCIENCE DEPARTMENT

LINUX COMPLETELY FAIR SCHEDULER
(CFS)

Magicians protect their secrets not because the secrets are large and
important, but because they are so small and trivial. The wonderful effects
created on stage are often the result of a secret so absurd that the
magician would be embarrassed to admit that that was how it was done.

Christopher Priest, The Prestige

5

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.6

Linux Completely Fair Scheduler (CFS)

¨ CFS accomplishes it proportional or fair-share goals differently from
lottery scheduling
¤ Does so in a highly efficient and scalable fashion

¨ To achieve its efficiency goals, CFS aims to spend very little time
making scheduling decisions through:
¤ Its inherent design
¤ Its clever use of data structures well-suited to the task

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.7

CFS: Basic Operation

¨ Whereas most schedulers are based around the concept of a fixed
time slice, CFS operates a bit differently

¨ GOAL: Fairly divide a CPU evenly among all competing processes
¤ Does so through a simple counting-based technique known as virtual

runtime (vruntime)

7

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.8

vruntime

¨ As each process runs, it accumulates vruntime

¨ In the most basic case, each process’s vruntime increases at the
same rate, in proportion with physical (real) time

¨ When a scheduling decision occurs, CFS will pick the process with the
lowest vruntime to run next

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.9

How does the scheduler know when to stop the
currently running process, and run the next one?

¨ Trade-off Space:
¤ If CFS switches too often?

n Fairness is increased: CFS will ensure that each process receives its share of CPU
even over miniscule time windows

n But at the cost of performance (too much context switching)

¤ If CFS switches less often?
n Performance is increased (reduced context switching)

n But at the cost of near-term fairness

9

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.10

CFS manages this trade-off through various control
parameters

¨ sched_latency
¤ CFS uses this value to determine how long one process should run before

considering a switch
n Effectively determining its time slice but in a dynamic fashion

¨ A typical sched_latency value is 48 (milliseconds)
¤ CFS divides this value by the number (n) of processes running on the CPU to

determine the time slice for a process
n And thus, ensures that over this period of time, CFS will be completely fair

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.11

For example, if there are n = 4 processes running

¨ CFS divides the value of sched_latency by n to arrive at a per-
process time slice of 12 ms

¨ CFS then schedules the first job and runs it until it has used 12 ms of
(virtual) runtime
¤ Then checks to see if there is a job with lower vruntime to run instead

11

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.12

But what if there are “too many” processes running?

¨ Wouldn’t that lead to too small of a time slice, and thus too many context
switches?
¤ Yes!

¨ To address this issue, CFS adds another parameter, min_granularity,
which is usually set to a value like 6 ms
¤ CFS will never set the time slice of process to less than this value, ensuring that

not too much time is spent in scheduling overhead

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.13

For example, if there are ten processes running

¨ Our original calculation would divide sched_latency by ten to
determine the time slice (result: 4.8 ms)
¤ However, because of min granularity, CFS will set the time slice of each

process to 6 ms instead

¨ Although CFS won’t (quite) be perfectly fair over the target scheduling
latency (sched_latency) of 48 ms, it will be close
¤ While still achieving high CPU efficiency

13

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.14

CFS utilizes a periodic timer interrupt

¨ CFS can only make decisions at fixed time intervals

¨ This interrupt goes off frequently (e.g., every 1 ms)
¤ Giving CFS a chance to wake up and determine if the current job has

reached the end of its run

¨ If a job has a time slice that is not a perfect multiple of the timer
interrupt interval?
¤ That is OK
¤ CFS tracks vruntime precisely, which means that over the long haul, it will

eventually approximate ideal sharing of the CPU

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.15COMPUTER SCIENCE DEPARTMENT

CFS: WEIGHTING OR NICENESS

15

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.16

Weighting (Niceness)

¨ CFS also enables controls over process priority to give some processes
a higher share of the CPU.
¤ It does this not with tickets, but through a classic UNIX mechanism known as

the nice level of a process

¨ The nice parameter can be set anywhere from −20 to +19 for a
process, with a default of 0
¤ Positive nice values imply lower priority and negative values imply higher

priority
¤ When you’re too nice, you just don’t get as much (scheduling) attention, alas!

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.17

CFS maps the nice value of each process to a weight

17

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.18

These weights allow us to compute the effective time
slice of each process

¨ As we did before, but now accounting for their priority differences

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.19

Example: Assume there are two jobs A and B

¨ A has a higher priority by assigning it a nice value of −5:

¨ B has the default priority (nice value equal to 0)

¨ Note: weightA (from the table) is 3121, whereas weightB is 1024

¨ A’s time-slice: 3121/[3121+ 1024] ~ ¾
¨ B’s time-slice: 1024/[3121+ 1024] ~ ¼

19

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.20

The way CFS calculates vruntime must also be
adapted

¨ The new formula, which takes the actual run time that process i has
accrued (runtimei) and scales it inversely by the weight of the
process
¤ By dividing the default weight of 1024 (weight0) by its weight, weighti

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.21COMPUTER SCIENCE DEPARTMENT

EFFICIENT DATA STRUCTURES

N.B: When a scheduling decision occurs, CFS will pick the
process with the lowest vruntime to run next

21

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.22

Using efficient data structures

¨ Knowing which data structure to use when is a hallmark of good design

¨ When picking a data structure for a system you are building, carefully
consider its access patterns and its frequency of usage
¤ By understanding these, you will be able to implement the right structure for

the task at hand

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.23

Schedulers and data structures

¨ When the scheduler has to find the next job to run, it should do so as
quickly as possible

¨ Simple data structures like lists don’t scale: modern systems sometimes
comprise1000s of processes
¤ Searching through a long-list every so many milliseconds is wasteful

23

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.24

CFS addresses this by keeping processes in a red-
black tree

¨ A red-black tree is one of many types of balanced trees; in contrast
to a simple binary tree

¤ Binary trees can degenerate to list-like performance under worst-case
insertion patterns

¤ Balanced trees do a little extra work to maintain low depths, and thus
ensure that operations are logarithmic (and not linear) in time

¤ Worst case search, insert, delete: O(log n)
n Amortized: O(log n), O(1), O(1)

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.25

CFS and red-black trees

¨ Processes are ordered in the tree by vruntime, and most operations
(such as insertion and deletion) are logarithmic in time, i.e., O(log n)
¤ When n is in the thousands, logarithmic is noticeably more efficient than

linear

¨ CFS does not keep all process in this structure; rather, only running (or
runnable/ready) processes

¨ If a process goes to sleep (say, waiting on an I/O to complete, or for a
network packet to arrive), it is removed from the tree and kept track
of elsewhere

25

L16.26COMPUTER SCIENCE DEPARTMENT

DEALING WITH I/O AND SLEEPING
PROCESSES

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.27

Dealing With I/O And Sleeping Processes [1/2]

¨ One problem with picking the lowest vruntime to run next arises with
jobs that have gone to sleep for a long period of time

¨ Imagine two processes, A and B
¤ A runs continuously, and B which has gone to sleep for a long period of time

(say, 10 seconds)

¤ When B wakes up, its vruntime will be 10 seconds behind A’s

¤ Thus (if we’re not careful), B will now monopolize the CPU for the next 10
seconds while it catches up, effectively starving A

27

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.28

Dealing With I/O And Sleeping Processes [1/2]

¨ CFS handles this case by altering the vruntime of a job when it
wakes up

¨ Specifically, CFS sets the vruntime of that job to the minimum value
found in the tree
¤ In this way, CFS avoids starvation, but not without a cost

n Jobs that sleep for short periods of time frequently do not ever get their fair share
of the CPU

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.29COMPUTER SCIENCE DEPARTMENTIDLE THREADS
29

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.30

Dispatcher in Windows XP

¨ Use a queue for each scheduling priority

¨ Traverse the queues from highest to lowest
¤ Until it finds a thread that is ready to run

¨ If no ready thread is found?
¤ Dispatcher will execute a special thread: idle thread

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.31

Idle thread in Windows

¨ Primary purpose is to eliminate a special case
¤ Cases when no threads are runnable or ready
¤ Idle threads are always in a ready state

n If not already running

¨ Scheduler can always find a thread to execute

¨ If there are other eligible threads?
¤ Scheduler will never select the idle thread

31

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.32

Idle threads in Windows

¨ Windows thread priorities go from 0-31
¤ Idle thread priority can be thought of as −1

¨ Threads in the system idle process can also implement CPU power
saving
¤ On x86 processors, run a loop of halt instructions
¤ Causes CPU to turn off internal components

n Until an interrupt request arrives

¤ Recent versions also reduce the CPU clock speed

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.33

Time consumed by the idle process

¨ It may seem that the idle process is monopolizing the CPU
¤ It is merely acting as a placeholder during free time
¤ Proof that no other process wants that CPU time

33

L16.34COMPUTER SCIENCE DEPARTMENT

DEADLOCKS

A waiting process is never again able to change state
 It is waiting for resources held by other processes

Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs
To terrify, to find a thing
He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams
He wonders what it's all about

Telescope, Cage the Elephant

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.35

What we will look at …

Deadlocks

System Model

Characterization

Requirements

Avoidance

Detection &
Recovery

Prevention

Why?

35

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.36

For many applications, processes need exclusive
accesses to multiple resources

¨ Process A: Asks for scanner and is granted it

¨ Process B: Asks CD recorder first and is granted it
¨ Process A: Now asks for CD recorder

¨ Process B: Now asks for Scanner

¨ Both processes are blocked and will remain so forever!
¤ Deadlock

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.37

Other deadlock situations

¨ Distributed systems involving multiple machines

¨ Database systems
¤ Process 1 locks record R1
¤ Process 2 locks record R2
¤ Then, processes 1 and 2 try to lock each other’s record

n Deadlock

¨ Deadlocks can occur in hardware or software resources

37

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.38

Resource Deadlocks

¨ Major class of deadlocks involves resources
¤ Can occur when processes have been granted access to devices, data

records, files, etc.
¤ Other classes of deadlocks: communication deadlocks, two-phase locking

¨ Related concepts
¤ Livelocks and starvation

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.39

Preemptable resources

¨ Can be taken away from process owning it with no ill effects

¨ Example: Memory
¤ Process B’s memory can be taken away and given to process A

n Swap B from memory, write contents to backing store, swap A in and let it use the
memory

39

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.40

Non-preemptable resources

¨ Cannot be taken away from a process without causing the process to
fail

¨ If a process has started to burn a CD
¤ Taking the CD-recorder away from it and giving it to another process?

n Garbled CD
n CD recorders are not preemptable at an arbitrary moment

¨ In general, deadlocks involve non-preemptable resources

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.41

Some notes on deadlocks

¨ The OS typically does not provide deadlock prevention facilities

¨ Programmers are responsible for designing deadlock free programs

41

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.42

System model

¨ Finite number of resources
¤ Distributed among competing processes

¨ Resources are partitioned into different types
¤ Each type has a number of identical instances
¤ Resource type examples:

n Memory space, files, I/O devices

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.43

A process must utilize resources in a sequence

¨ Request
¤ Requesting resource must wait until it can acquire resource
¤ request(), open(), allocate()

¨ Use
¤ Operate on the resource

¨ Release
¤ release(), close(), free()

43

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.44

For kernel managed resources, the OS maintains a
system resource table

¨ Is the resource free?
¤ Record process that the resource is allocated to

¨ Is the resource allocated?
¤ Add to queue of processes waiting for resource

¨ For resources not managed by the OS
¤ Use wait() and signal() on semaphores

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.45

Deadlock: Formal Definition

¨ A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause

¨ Because all processes are waiting, none of them can cause events to
wake any other member of the set
¤ Processes continue to wait forever

45

L16.46COMPUTER SCIENCE DEPARTMENT

DEADLOCK CHARACTERIZATION

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.47

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources

n Which are currently held by other processes

47

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.48

Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0

¤ Implies hold-and-wait

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.49COMPUTER SCIENCE DEPARTMENT

DEADLOCKS VS. STARVATION

49

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.50

Deadlocks vs. Starvation [1/2]

¨ Deadlocks and starvation are both liveness concerns

¨ Starvation
¤ Task fails to make progress for an indefinite period of time

¨ Deadlock is a form of starvation, BUT with a stronger condition
¤ A group of tasks forms a cycle where none of the tasks makes progress

n Because each task is waiting for some other task in the cycle to take action

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.51

Deadlocks vs. Starvation [2/2]

¨ Deadlock implies starvation (literally for the dining philosophers
problem)

¨ Starvation DOES NOT imply deadlock

51

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.52

Also …

¨ Just because a system can suffer deadlock or starvation does not mean
that it always will
¤ A system is subject to starvation if a task could starve in some circumstances
¤ A system is subject to deadlock if a group of tasks could deadlock in some

circumstances

¨ Circumstances impact whether a deadlock or starvation may occur
¤ Choices made by scheduler, number of tasks, workload or sequence of

requests, which tasks win races to acquire locks, order of task activations, etc.

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.53COMPUTER SCIENCE DEPARTMENT

RESOURCE ALLOCATION GRAPH

53

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.54

Resource allocation graph

¨ Used to describe deadlocks precisely

¨ Consists of a set of vertices and edges

¨ Two different sets of nodes
§ P: the set of all active processes in system
§ R: the set of all resource types in the system

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.55

Directed edges

¨ Request edge
¤ Pi has requested an instance of resource type Rj
¤ Directed edge from process Pi to resource Rj
¤ Denoted Pi à Rj
¤ Currently waiting for that resource

¨ Assignment edge
¤ Instance of resource Rj assigned to process Pi
¤ Directed edge from resource Rj to process Pi
¤ Denoted Rj à Pi

55

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.56

Representation of Processes and Resources

Processes Resources

A resource type may have
multiple instances

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.57

R3R1

R2

Resource Allocation Graph example

P1 P2 P3

R4 Request Edge
Assignment Edge

57

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.58

Determining deadlocks

¨ If the graph contains no cycles?
¤ No process in the system is deadlocked

¨ If there is a cycle in the graph?
¤ If each resource type has exactly one instance

n Deadlock has occurred

¤ If each resource type has multiple instances
n A deadlock may have occurred

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.59

Resource Allocation Graph:
Deadlock example

P1 P2 P3

R1

R2

R3

R4

P1àR1àP2àR3àP3àR2àP1
P2àR3àP3àR2àP2

Two cycles

59

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.60

Resource Allocation Graph:
Cycle but not a deadlock

P1 P3

R1

R2

P1àR1àP3àR2àP1

P4

P2

P4 may release instance of R2
allocate to P3 and break cycle

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.61

Resource Allocation Graphs and Deadlocks

¨ If the graph does not have a cycle
¤ No deadlock

¨ If the graph does have a cycle
¤ System may or may not be deadlocked

61

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.62

Methods for handling deadlocks

¨ Use protocol to prevent or avoid deadlocks
¤ Ensure system never enters a deadlocked state

¨ Allow system to enter deadlocked state; BUT
¤ Detect it and recover

¨ Ignore problem, pretend that deadlocks never occur

62

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.32

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.63

Problems with undetected deadlocks

¨ Resources held by processes that cannot run

¨ More and more processes enter deadlocked state
¤ When they request more resources

¨ Deterioration in system performance
¤ Requires restart

63

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.64

When is ignoring the problem viable?

¨ When they occur infrequently (once per year)
¤ Ignoring is the cheaper solution
¤ Prevention, avoidance, detection and recovery

n Need to run constantly

64

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.33

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.65

The contents of this slide-set are based on the
following references
¨ Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau. Operating Systems: Three Easy

Pieces. 1st edition. CreateSpace Independent Publishing Platform. ISBN-13: 978-
1985086593. [Chapter 9]

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5, 7]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 7]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 6]

65

