
SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[DEADLOCKS]

Shrideep Pallickara
Computer Science

Colorado State University

1

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.2

Frequently asked questions from the previous class
survey

¨ How is sched_latency chosen?
¨ Are there cases where processes don’t need as much of the time

slice that they are assigned? Downsides if this is the case?
¨ How does a scheduler assign a process to the same core to

avoid cache?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.3

Topics covered in this lecture

¨ Dealing with Deadlocks
¨ Deadlock Prevention
¨ Deadlock Avoidance

3

L17.4COMPUTER SCIENCE DEPARTMENT

SOME DEADLOCK EXAMPLES

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.5

Law passed by Kansas Legislature … early 20th
Century

“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone”

5

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.6

Dining philosophers problem:
Necessary conditions for deadlock (1)

¨ Mutual exclusion
¤2 philosophers cannot share the same chopstick

¨ Hold-and-wait

¤A philosopher picks up one chopstick at a time
¤Will not let go of the first while it waits for the second one

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.7

Dining philosophers problem:
Necessary conditions for deadlock (2)

¨ No preemption
¤A philosopher does not snatch chopsticks held by some other

philosopher

¨ Circular wait
¤Could happen if each philosopher picks chopstick with the same hand

first

7

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.8

Is there a traffic deadlock here?

T

C

C

T

C

C

TCT

C C

C

C

…

C

… …

… …

…

… …

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.9

The traffic scenario:
Necessary Conditions (1)

¨ Mutual Exclusion
¤A vehicle needs its own space
¤We can’t stack automobiles on top of each other

¨ Hold-and-wait
¤A vehicle does not move and stays in place if it cannot advance

9

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.10

The traffic scenario:
Necessary Conditions (2)

¨ No preemption
¤We cannot move an automobile to the side

¨ Circular-wait
¤ Each vehicle is waiting for the one in front of it to advance

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.11COMPUTER SCIENCE DEPARTMENT

DEALING WITH DEADLOCKS

11

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.12

Four strategies for dealing with deadlocks

¨ Ignore the problem
¤May be if you ignore it, it will ignore you

¨ Deadlock prevention
¤By structurally negating one of the four required conditions

¨ Deadlock avoidance
¤By careful resource allocation

¨ Detection and Recovery
¤ Let deadlocks occur, detect them, and take action

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.13COMPUTER SCIENCE DEPARTMENT

THE OSTRICH ALGORITHM

13

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.14

Ostrich Algorithm

¨ Stick your head in the sand; pretend there is no problem at all

¨ Reactions
¤Mathematician: Unacceptable; prevent at all costs
¤ Engineers: How often? Costs? Etc.

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.15

OS suffer from deadlocks that are not even
detected [1/3]

¨ Number of processes in the system
¤ Total determined by slots in the process table

n Slots are a finite resource

¨ Maximum number of open files
¤Restricted by size of the inode table

¨ Swap space on the disk

15

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.16

OS suffer from deadlocks that are not even
detected [2/3]

¨ Every OS table represents a finite resource

¨ Should we abolish all of these because collection of n processes
① Might claim 1/n th of the total AND
② Then try to claim another one

¨ Most users prefer occasional deadlock to a restrictive policy
¤ E.g., All users: 1 process, 1 open file …. one everything is far too

restrictive

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.17

OS suffer from deadlocks that are not even
detected [3/3]

¨ If deadlock elimination is free
¤No discussions

¨ But the price is often high
¤ Inconvenient restrictions on processes

¨ Tradeoff
¤Between convenience and correctness

17

L17.18COMPUTER SCIENCE DEPARTMENT

DEADLOCK CHARACTERIZATION

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.19

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤At least one resource held in nonsharable mode
¤When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤A process must hold one resource
¤Wait to acquire additional resources

n Which are currently held by other processes

19

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.20

Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤Resources cannot be preempted
¤Only voluntary release by process holding it

¨ Circular wait
¤A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0
¤ Implies hold-and-wait

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.21COMPUTER SCIENCE DEPARTMENT

DEADLOCK PREVENTION

Hanging on
You're all that's left to hold on to
I'm still waiting
I'm hanging on
You're all that's left to hold on to

Red Hill Mining Town, The Joshua Tree, U2

21

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.22

Deadlock Prevention

¨ Ensure that one of the necessary conditions for deadlocks
cannot occur
① Mutual exclusion

② Hold and wait

③ No preemption

④ Circular wait

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.23

Mutual exclusion must hold for non-sharable
resources, but …

¨ Sharable resources do not require mutually exclusive access
¤ Cannot be involved in a deadlock

¨ A process never needs to wait for sharable resource
¤Read-only files

¨ Some resources are intrinsically nonsharable
¤So, denying mutual exclusion often not possible

23

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.24

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 1]

¨ Process must request and be allocated all its resources before
execution
¤Resource requests must precede other system calls

¨ E.g., copy data from DVD drive, sort file, & print
¤Printer needed only at the end
¤BUT process will hold printer for the entire execution

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.25

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 2]

¨ Allow a process to request resources only when it has none
¤Release all resources, before requesting additional ones

¨ E.g., copy data from DVD drive, store file, & print
¤ First request DVD and disk file

n Copy and release resources

¤ Then request file and printer

25

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.26

Disadvantages of protocols targeting hold-and-wait

¨ Low resource utilization
¤Resources are allocated but unused for long durations

¨ Starvation
¤ If a process needs several popular resources

n Popular resource might always be allocated to some other process

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.27

Deadlock Prevention: Eliminate the preemption
constraint [1/2]

¨ {C1} If a process is holding some resources
¨ {C2} Process requests another resource

n Cannot be immediately allocated

¨ All resources currently held by process is preempted
¤Preempted resources added to list of resources process is waiting for

27

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.28

Deadlock Prevention: Eliminate the preemption
constraint [2/2]

¨ Process requests resources that are not currently available
¤ If resources are allocated to another waiting process?

n Preempt resources from the second process and assign it to the first one

¨ Often applied when resource state can be saved and restored
¤CPU registers and memory space
¤Unsuitable for tape drives

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.29

Deadlock Prevention: Eliminating Circular wait

¨ Impose total ordering of all resource types
¤Assign each resource type a unique number
¤One-to-one function F:RàN
F(tape drive) = 1;
F(printer) = 12

① Request resources in increasing order

② If several instances of a resource type needed?
¤Single request for all them must be issued

29

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.30

Requesting resources in an increasing order of
enumeration

¨ Process initially requested Ri
¨ This process can now request Rj ONLY IF
 F(Rj)> F(Ri)

¨ Alternatively, process requesting Rj must have released
resources Ri such that
 F(Ri)>= F(Rj)

¨ Eliminates circular wait

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.31

Hierarchy of resources and deadlock prevention

¨ Hierarchy by itself does not prevent deadlocks
¤Developed programs must follow ordering

¨ F based on order of usage of resources
¤ Tape drive needed before printing

n F(tape drive) < F(printer)

31

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.32

Deadlock Prevention: Summary

¨ Prevent deadlocks by restraining how requests are made
¤ Ensure at least 1 of the 4 conditions cannot occur

¨ Side effects:
¤ Low device utilization
¤Reduced system throughput

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.33

Dining Philosophers:
Deadlock prevention strategies [1/2]

¨ Mutual exclusion
¤Philosophers can share a chopstick

¨ Hold-and-wait

¤Philosopher should release the first chopstick if it cannot obtain the
second one

33

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.34

Dining Philosophers:
Deadlock prevention strategies [2/2]

¨ Preemption
¤Philosophers can forcibly take each other’s chopstick

¨ Circular-wait

¤Number the chopsticks
¤Pick up chopsticks in ascending order

n Pick the lower numbered one before the higher numbered one

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.35COMPUTER SCIENCE DEPARTMENT

DEADLOCK AVOIDANCE

35

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.36

Deadlock avoidance

¨ Require additional information about how resources are to be
requested

¨ Knowledge about sequence of requests and releases for
processes
¤Allows us to decide if resource allocation could cause a future deadlock
¤Process P: Tape drive, then printer
¤Process Q: Printer, then tape drive

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.37

Deadlock avoidance:
Handling resource requests

¨ For each resource request:
¤Decide whether or not process should wait

n To avoid possible future deadlock

¨ Predicated on:
① Currently available resources
② Currently allocated resources
③ Future requests and releases of each process

37

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.38

Avoidance algorithms differ in the amount and type
of information needed

¨ Resource allocation state
¤Number of available and allocated resources
¤Maximum demands of processes

¨ Dynamically examine resource allocation state
¤ Ensure circular-wait cannot exist

¨ Simplest model:
¤Declare maximum number of resources for each type
¤Use information to avoid deadlock

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.39

Safe sequence

¨ Sequence of processes <P1,P2,…,Pn> for the current
allocation state

¨ Resource requests made by Pi can be satisfied by:
¤Currently available resources
¤Resources held by Pj where j < i

n If needed resources not available, Pi can wait

¤ In general, when Pi terminates, Pi+1 can obtain its needed resources

¨ If no such sequence exists: system state is unsafe

39

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.40

Deadlock avoidance: Safe states

¨ If the system can:
① Allocate resources to each process in some order

n Up to the maximum for the process

② Still avoid deadlock

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.41

Safe states and deadlocks

¨ A system is safe ONLY IF there is a safe sequence

¨ A safe state is not a deadlocked state
¤Deadlocked state is an unsafe state
¤Not all unsafe states are deadlocks

41

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.42

unsafe

State spaces

safe

deadlock

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.43

Unsafe states

¨ An unsafe state may lead to deadlock

¨ Behavior of processes controls unsafe states

¨ Cannot prevent processes from requesting resources such that
deadlocks occur

43

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.44

Example: 12 Tape drives available in the system

Maximum Needs Current Allocation

P0 10 5

P1 4 2

P2 9 2

¨ At time T0 the system is in a safe state
¨ P1 can be given 2 tape drives
¨ When P1 releases its resources; there are 5 drives
¨ P0 uses 5 and subsequently releases them (# 10 now)

¨ P2 can then proceed

Safe sequence
<P1, P0 , P2>

Before T0:
3 drives available

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.45

Example: 12 Tape drives available in the system

¨ At time T1, P2 is allocated 1 tape drive

Maximum Needs Current Allocation

P0 10 5

P1 4 2

P2 9 2

Before T1:
3 drives available

45

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.46

Example: 12 Tape drives available in the system

¨ At time T1, P2 is allocated 1 tape drive
¨ Only P1can proceed.
¨ When P1 releases its resources; there are 4 drives

¤P0 needs 5 and P2 needs 6
¨ Mistake in granting P2 additional tape drive

Maximum Needs Current Allocation

P0 10 5

P1 4 2

P2 9 3

After T1:
2 drives available

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.47

Crux of deadlock avoidance algorithms

¨ Ensure that the system will always remain in a safe state

¨ Resource allocation request granted only if it will leave the
system in a safe state

47

L17.48COMPUTER SCIENCE DEPARTMENT

RESOURCE ALLOCATION GRAPH ALGORITHM

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.49

Claim edges

¨ Indicates that a process Pi may request a resource Rj at some
time in the future

¨ Representation:
¤Same direction as request
¤Dotted line

49

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.50

Resource allocation graph with a claim edge

P1 P2

R1

R2

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.51

Conversion of claim edges

¨ When process Pi requests resource Rj
¤Claim edge converted to a request edge

¨ When resource Rj released by Pi
¤ The assignment edge RjàPi is reconverted to a claim edge PiàRj

51

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.52

Allocating resources

¨ When process Pi requests resource Rj

¨ Request granted only if
¤Converting claim edge to PiàRj to an assignment edge RjàPi does

not result in a cycle

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.53

Using the allocation graph to allocate resources
safely

P1 P2

R1

R2
P2has requested R2

53

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.54

Using the allocation graph to allocate resources
safely

P1 P2

R1

R2 Assignment leads
to a cycle

If P1 requests R2after it’s
 assigned to P2?
 A deadlock will occur

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L17.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.55

Resource allocation graph algorithm

¨ Not applicable in systems with multiple resource instances

55

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L17.56

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 7]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 6]

56

