
SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[DEADLOCKS]

Shrideep Pallickara
Computer Science

Colorado State University

1

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.2

Frequently asked questions from the previous class
survey

¨ When ignoring deadlocks, is any level of cleanup performed?

¨ Deadlock prevention
¤ Would you ever need to prevent more than one structural requirement? All

4?
¤ Who checks that the resources are being requested in ascending order?
¤ Who assigns the numbers? Is the assignment different in different systems?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.3

Topics covered in this lecture

¨ Deadlock Avoidance
¤ Banker’s Algorithm

¨ Deadlock Detection
¤ And … recovery

¨ Other issues relating to deadlocks

3

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.4

A deadlock-prone system can be in one of three
states: safe, unsafe, and deadlocked

¨ Safe state: For any possible sequence of resource requests, there is at
least one safe sequence of processing the requests
¤ That eventually succeeds in granting all pending and future requests

¨ Unsafe state: There is at least one sequence of future resource requests
that leads to deadlock

¨ In a deadlocked state, the system has at least one deadlock

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.5

A system in a safe state controls its own destiny

¨ For any workload, it can avoid deadlock by delaying the processing
of some requests
¤ Once the system enters an unsafe state, it may not be able to avoid

deadlock

¨ In particular, the Banker’s Algorithm (that we will look at next) delays
any request that takes it from a safe to an unsafe state.

5

L18.6COMPUTER SCIENCE DEPARTMENT

BANKER’S ALGORITHM

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.7

Banker’s Algorithm

¨ Designed by Dijkstra

¨ Modeled on a small-town banker
¤ Customers have been extended lines of credit
¤ Not ALL customers will need their maximum credit immediately

¨ Customers make loan requests from time to time

7

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.8

Crux of the Banker’s Algorithm

¨ Consider each request as it occurs
¤ See if granting it is safe

¨ If safe: grant it; If unsafe: postpone

¨ For safety banker checks if there is enough to satisfy some customer
¤ If so, that customer’s loans are assumed to be repaid
¤ Customer closest to limit is checked next
¤ If all loans can be repaid; state is safe: loan approved

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.9

Banker’s Algorithm: Managing the customers. Banker has
only reserved 10 units instead of 22

A 0 6

B 0 5

C 0 4

D 0 7

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Has Max

Free: 10 Free: 2 Free: 1

SAFE SAFE UNSAFE
Delay all requests except C

A customer may not need the
entire credit line. But the banker
cannot count on this behaviorThere is ONLY ONE resource -- Credit

9

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.10

Banker’s algorithm: Crux

¨ Declare maximum number of resource instances needed
¤ Cannot exceed resource thresholds

¨ Determine if resource allocations leave system in a safe state

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.11

Bankers Algorithm: Data Structures [Overview]

Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

A, B, and C are different types of resources

11

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.12

Data Structures: n is the number of processes and m is the number
of resource types

¨ Available: Vector of length m
¤ Number of resources for each type

n Available[i] = k

¨ Max: n x m matrix
¤ Maximum demand for each process (in each row)
¤ Max[i,j]= k

n Process Pi may request at most k instances of Rj

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.13

Data Structures: n is the number of processes and m is the number
of resource types

¨ Allocation: n x m matrix
¤ Resource instances allocated for each process (each row)
¤ Allocation[i,j]=k

n Process Pi currently allocated k instances of Rj

¨ Need: n x m matrix
¤ Resource instances needed for each process (each row)
¤ Need[i,j]=k

n Process Pi may need k more instances of Rj

13

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.14

Vectors identifying a process’ resource requirements:
Rows in the matrices

¨ Allocationi
¤ Resource instances allocated for process Pi

¨ Needi
¤ Additional resource instances that process Pi may still request

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.15

Banker’s Algorithm: Notations

¨ X and Y are vectors of length m

¨ X ≤ Y if-and-only-if
 X[i] ≤ Y[i] for all i=1,2,...,m

¨ X = {1,7,3,2} and Y = {0,3,2,1}
So, Y ≤ X
Also Y < X if Y ≤ X and Y ≠ X

15

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.16

Banker’s Algorithm: Resource-request

¨ Requesti: Request vector for process Pi
¤ Requesti[j]=k

n Process Pi wants k instances of Rj

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.17

Banker’s Algorithm: Resource-request

Requesti≤ Needi

Requesti≤ Available

Available = Available – Requesti
Allocationi = Allocationi + Requesti
Needi = Needi - Requesti

Yes

Yes

NO

NO

Error
Exceeded claim

Wait for
availability

17

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.18

Bankers Algorithm: Safety
Initialize Work = Available

Find i such that:
Finish[i]==false && Needi≤ Work

Work = Work + Allocationi
Finish[i]=true

for all i
 if (Finish[i] = true)

YES

NO

YES

Safe state

NO
Unsafe state

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.19

Bankers Algorithm: Example

Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<P1, P3, P4, P2, P0> satisfies safety criteria

Suppose process P1 requests 1 A, and 2 Cs: Request1 = (1,0,2)
Request1≤ Available
Pretend request was fulfilled

19

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.20

Bankers Algorithm: Example

Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 2 3 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<P1, P3, P4, P0, P2> satisfies safety criteria

Request0 = (0,2,0) from process P0 cannot be granted: unsafe state

Request4 = (3,3,0) from process P4 cannot be granted: resources unavailable

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.21

Bankers Algorithm: Example

Allocation Max Available
 A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Request0 = (0,2,0) from process P0 cannot be granted: unsafe state

None of the processes can now satisfy their max resource needs.

21

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.22

Bankers Algorithm: Practical implications [1/2]

¨ Understanding the Banker’s Algorithm can help in designing simple
solutions for specific problems

¨ Banker’s Algorithm to devise a rule for thread safe acquisition of a
pair of locks, A and B, with mutually recursive locking?
¤ Suppose a thread needs to acquire locks A and B, in that order, while

another thread needs to acquire lock B first, then A
¤ RULE: A thread is always allowed to acquire its second lock

n Acquire first lock provided the other thread does not already hold its first lock

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.23

Bankers Algorithm: Practical implications [2/2]

¨ Processes rarely know in advance about their maximum resource needs

¨ Number of processes managed by the kernel is not fixed
¤ Varies dynamically

¨ Resources thought to be available can vanish

23

L18.24COMPUTER SCIENCE DEPARTMENT

DEADLOCK DETECTION

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.25

Single instance of EACH resource type

¨ Use wait-for graph
¤ Variant of the resource allocation graph

¨ Deadlock exists if there is a cycle in the graph

¨ Transformation
① Remove resource nodes
② Collapse appropriate edges

25

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.26

What the edges in the wait-for graph imply

¨ Pi à Pj
¤ Process Pi is waiting for a resource held by Pj

¨ Pi à Pj only if resource allocation graph has
① Pià Rq and

② Rqà Pj for some resource Rq

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.27

Transforming a resource allocation graph into a
wait-for graph

R4R1

R2

P1 P2 P3

R5

R3

P4

P5

27

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.28

Transforming a resource allocation graph into a
wait-for graph

R4

R2

R1

P1 P2 P3

R5

R3

P4

P5

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.29

Transforming a resource allocation graph into a
wait-for graph

P1 P2 P3

P4

P5

29

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.30

Deadlock detection for multiple instances of a
resource type

¨ Wait-for graph is not applicable

¨ Approach uses data structures similar to Banker’s algorithm

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.31

Data Structures: n is number of processes
m is number of resource types
¨ Available: Vector of length m

¤ Number of resources for each type

¨ Allocation: n x m matrix
¤ Resource instances allocated for each process
¤ Allocation[i,j]=k

n Process Pi currently allocated k instances of Rj

¨ Request: n x m matrix
¤ Current request for each process
¤ Request[i,j]=k

n Process Pi requests k more instances of Rj

31

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.32

Deadlock detection: Initialization
Work and Finish are vectors of length m & n

Work = Available

if (Allocationi ≠ 0) {

 Finish[i] = false;
} else {

 Finish[i] = true;

}

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.33

Deadlock detection

Find i such that:
Finish[i]==false && Requesti≤ Work

Work = Work + Allocationi
Finish[i]=true

for all i
 if (Finish[i] = true)

YESNO

YES

Safe state

NO
Deadlock

33

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.34

Deadlock detection: Usage

¨ How often will the deadlock occur?

¨ How many processes will be affected when it happens?

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.35

Frequency of invoking deadlock detection

¨ Resources allocated to deadlocked process idle
¤ Until the deadlock can be broken

¨ Deadlocks occur only when process makes a request
¤ Significant overheads to run detection per request

¨ Middle ground: Run at regular intervals

35

L18.36COMPUTER SCIENCE DEPARTMENT

RECOVERY FROM DEADLOCK

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.37

Recovery from deadlock

¨ Automated or manual

¨ OPTIONS
¤ Break the circular wait: Terminate processes

¤ Preempt resources from deadlocked process(es)

37

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.38

Breaking circular wait:
Process termination

¨ Terminate all deadlocked processes

¨ Terminate processes one at a time
¤ After each termination, check if deadlock persists

¨ Reclaim all resources allocated to terminated process

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.39

Terminating a Process

¨ Process may be in the midst of something
¤ Updating files, printing data, etc.

¨ Terminate process whose termination will incur minimum costs
¤ Policy decision similar to scheduling decisions

39

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.40

Factors determining process termination

¨ Priority

¨ How long has the process been running?
¤ How much longer?

¨ Number and types of resources used
¤ How many more needed?

¨ Interactive or batch

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.41

DONE

Deadlock recovery: Resource preemption

Preempt resources from
some process

Give resources to some
other process

Deadlock broken

Deadlock persists

For a set of deadlocked processes

41

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.42

Resource preemption: Issues

¨ Selecting a victim
¤ Which resource and process
¤ Order of preemption to minimize cost

¨ Starvation
¤ Process can be selected for preemption finite number of times

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.43

Deadlock recovery through rollbacks

¨ Checkpoint process periodically
¤ Contains memory image and resource state

¨ Deadlock detection tells us which resources are needed

¨ Process owning a needed resource
¤ Rolled back to before it acquired needed resource

n Work done since rolled back checkpoint discarded

¤ Assign resource to deadlocked process

43

L18.44COMPUTER SCIENCE DEPARTMENT

OTHER ISSUES

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.45

Two-phase locking

¨ Used in database systems

¨ Operation involves requesting locks on several records and updating
all the locked records

¨ When multiple processes are running?
¤ Possibility of deadlocks

45

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.46

Two-Phase Locking

¨ First phase
¤ Process tries to acquire all the locks it needs, one at time
¤ If successful: start second-phase
¤ If some record is already locked?

n Release all locks and start the first phase all over

¨ Second-phase
¤ Perform updates and release the locks

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.47

Communication Deadlocks

¨ Process A sends a request message to process B
¤ Blocks until B sends a reply back

¨ Suppose, that the request was lost
¤ A is blocked waiting for a reply
¤ B is blocked waiting for a request to do something
¤ Communication deadlock

47

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.48

Communication deadlocks

¨ Cannot be prevented by ordering resources (there are none)
¤ Or avoided by careful scheduling (no moments when a request can be

postponed)

¨ Solution to breaking communication deadlocks?
¤ Timeouts

n Start a timer when you send a message to which a reply is expected.

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.49

Livelocks

¨ Polling (busy waits) used to enter critical section or access a resource
¤ Typically used for a short time when overhead for suspension is considered

greater

¨ In a livelock two processes need each other’s resource
¤ Both run and make no progress, but neither process blocks
¤ Use CPU quantum over and over without making progress

49

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.50

Livelocks do occur

¨ If fork fails because process table is full
¤ Wait for some time and try again

¨ But there could be a collection of processes each trying to do the same
thing

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L18.51

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 7]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 6]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 6]

51

