
SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Shrideep Pallickara
Computer Science

Colorado State University

1

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.2

Frequently asked questions from the previous class
survey

¨ Could the MMU be a potential bottleneck?

¨ Internal vs External fragmentation: Which one’s more common?
¨ Segmentation allows a process to avoid overwriting sections of itself?

¨ Page table holds information about the physical frame per entry?
¨ Software says that the recommendation memory needed is 8GB, but it

works on my 4 GB system? Why?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.3

Topics covered in this lecture

¨ Paging

¨ Translation look-aside buffers (TLB)
¨ Memory Protection in paged environments

¨ Shared Pages
¨ Page sizes

3

L21.4COMPUTER SCIENCE DEPARTMENT

PAGING

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.5

The Paging memory management scheme

¨ Physical address space of process can be non-contiguous

¨ Solves problem of fitting variable-sized memory chunks to backing
store
¤ Backing store has fragmentation problem

n Compaction is impossible

5

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.6

Basic method for implementing paging

¨ Break memory into fixed-sized blocks
¤ Physical memory: frames
¤ Logical memory: pages

¨ Backing store is also divided the same way

Same size

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.7

What will seem odd, and perhaps cool, about
paging [1/2]

¨ While a program thinks of its memory as linear …
¤ It is usually scattered throughout physical memory in a kind of abstract

mosaic

¨ The processor will execute one instruction after another using virtual
addresses
¤ The virtual addresses are still linear
¤ However, an instruction located at the end of a page will be located in a

completely different region of physical memory from the next instruction at
start of another page

7

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.8

What will seem odd, and perhaps cool, about
paging [2/2]

¨ Data structures appear to be contiguous using virtual addresses
¤ But a large matrix is scattered across many physical page frames

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.9

Paging: Analogy

¨ Shuffling several decks of cards together

¨ A single process in its virtual address page sees the cards of a single
deck in order
¤ A different process sees a completely different deck, but it will also be in

order

¨ In physical memory, however, the decks of all processes currently
running will be shuffled together, apparently at random

¨ Page tables are the magician’s assistant in locating cards from the
shuffled decks

9

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.10

Paging: Logical and Physical Memory

Page 0

Page 1

Page 2

Page 3

0

1

2

3

1

4

3

7

0

1

2

3

4

5

6

7

Page 0

Page 2

Page 1

Page 3

Logical Memory

Page Table

Physical Memory

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.11

Paging Hardware: Performing address translation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

11

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.12

m bits

Logical address

Page size

¨ A power of 2
§ Typical sizes: 512 bytes – 16 MB

¨ Size of logical address: 2m

¨ Page size: 2n

Page offset

nm - n

Page number

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.13

Paging and Fragmentation

¨ No external fragmentation
¤ Free frame available for allocation to other processes

¨ Internal fragmentation possible
¤ Last frame may not be full
¤ If process size is independent of page size

n Internal fragmentation = ½ page per process

13

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.14

Page sizes

¨ Processes, data sets, and memory have all grown over time
¤ Page sizes have also increased

¨ Some CPUs/kernels support multiple page sizes

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.15

Paging: User program views memory as a single
space

¨ Program is scattered throughout physical memory

¨ User view and physical memory reconciled by
¤ Address-translation hardware

¨ Process has no way of addressing memory outside of its page table

15

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.16

OS manages the physical memory

¨ Maintains frame-table; one entry per frame
¤ Free or allocated?
¤ If allocated: Which page of which process

¨ Maintains a page table for each process
¤ Used by CPU dispatcher to define hardware page table when process is

CPU-bound
n Paging increases context switching time

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.17

Example: 32-bit address space

¨ Page size = 4K
¨ Logical address = 0x23FA427

¨ What’s the offset within the page?
¤ 0x427

¨ What’s the page number?
¤ 0x23FA

¨ Page table entry maps 0x23FA to frame 0x12345 what is the physical
memory address for the logical address?
¤ 0x12345427

?

17

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.18

Example: 32-bit address space

¨ Page size = 1K

¨ Logical address = 0x23FA427

¨ What’s the offset within the page?
¤ 01| 00 0010 0111

¨ What’s the page number?
¤ 0010 0011 1111 1010 01

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.19COMPUTER SCIENCE DEPARTMENT

HARDWARE SUPPORT FOR PAGING

All accesses to memory must go through a map.
Efficiency is important.

19

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.20

The purpose of the page table is to map virtual
pages onto physical frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.21

Two major issues facing page tables

¨ Can be extremely large
¤ With a 4 KB page size, a 32-bit address space has 1 million pages
¤ Also, each process has its own page table

¨ The mapping must be fast
¤ Virtual-to-physical mapping must be done on every memory reference
¤ Page table lookup should not be a bottleneck

21

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.22

Implementing the page table:
Dedicated registers

¨ When a process is assigned the CPU, the dispatcher reloads these
registers

¨ Feasible if the page table is small
¤ However, for most contemporary systems page table entries are greater

than 106

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.23

Implementing the page table in memory

¨ Page table base register (PTBR) points to page table

¨ 2 memory accesses for each access
¤ One for the page-table entry
¤ One for the byte

23

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.24

Process and its page table:
When the page table entirely in memory?

¨ A pointer to the page table is stored in the page table base register
(PTBR) in the PCB
¤ Similar to the program counter

¨ Often there is also a register which tracks the number of entries in the
page table

¨ Page table need not be memory resident when the process is swapped
out
¤ But must be in memory when process is running

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.25COMPUTER SCIENCE DEPARTMENT

TRANSLATION LOOK-ASIDE BUFFERS

Cash is king. — Pehr Gyllenhammar

25

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.26

Observation

¨ Most programs make a large number of references to a small number
of pages
¤ Not the other way around

¨ Only a small fraction of the page table entries are heavily read
¤ Others are barely used at all

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.27

Translation look-aside buffer (TLB): Small, fast-
lookup hardware cache

¨ Number of TLB entries is small (64 ~ 1024)
¤ Contains few page-table entries

¨ Each entry of the TLB consists of 2 parts
¤ A key and a value

¨ When the associative memory is presented with an item
¤ Item is compared with all keys simultaneously

27

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.28

Using the TLB with page tables [1/2]

¨ TLB contains only a few page table entries

¨ When a logical address is generated by the CPU, the page number is
presented to the TLB
¤ When frame number is found (TLB hit), use it to access memory
¤ Usually just 10-20% longer than an unmapped memory reference

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.29

Using the TLB with page tables [2/2]

¨ What if there is a TLB miss?
¤ Memory reference to page table is made
¤ Replacement policies for the TLB entries

¨ Some TLBs allow certain entries to be wired down
¤ TLB entries for kernel code are wired down

29

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.30

Paging Hardware with a TLB

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

TLB

TLB Miss

TLB hit

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.31

TLB and Address Space Identifiers (ASIDs)

¨ ASID uniquely identifies each process
¤ Allows TLB to contain addresses from several different processes

simultaneously

¨ When resolving page numbers
¤ TLB ensures that ASIDs match
¤ If not, it is treated as a TLB miss

31

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.32

Without ASIDs TLB must be flushed with every
context switch

¨ Each process has its own page table

¨ Without flushing or ASIDs, TLB could include old entries
¤ Valid virtual addresses
¤ But incorrect or invalid physical addresses

n From previous process

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.33

Effective memory access times

¨ 20 ns to search TLB

¨ 100 ns to access memory

¨ If page is in TLB: access time = 20 + 100 = 120 ns
¨ If page is not in TLB:

 20 + 100 + 100 = 220 ns

Access TLB
Access memory to retrieve frame number

33

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.34

Effective access times with different hit ratios

¨ 80%
 = 0.80 x 120 + 0.20 x 220 = 140 ns

¨ 98%
 = 0.98 x 120 + 0.02 x 220 = 122 ns

¨ When hit rate increases from 80% to 98%
¤ Results in ~13% reduction in access time

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.35

TLB in modern, practical settings

¨ Hit time: 0.5 - 1 clock cycle

¨ Miss penalty: 10 - 100 clock cycles
¨ Miss rate: 0.01 - 1%

35

L21.36COMPUTER SCIENCE DEPARTMENT

MEMORY
PROTECTION IN
PAGED
ENVIRONMENTS

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.37

Protection bits are associated with each frame

¨ Kept in the page table

¨ Bits can indicate
¤ Read-write, read-only, execute
¤ Illegal accesses can be trapped by the OS

¨ Valid-invalid bit
¤ Indicates if page is in the process’s logical address space

37

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.38

0

1

2

3

4

5

6

7

Protection Bits: Page size=2K;
Logical address space = 16K

Page 0

Page 1

Page 2

2

3

4

7

Logical Memory

Page Table

Page 3

Page 4

Page 5

8

9

0

0

v

v

v

v

v

v

i

i

0

1

2
3

4
5

6

Page 0

Page X

Physical Memory

Page 1

Page 2

Page 3

Page 4

Page 5

…

7
8

9

Program restricted to 0 - 10468

10K = 10240

Frame
Number

Valid/
Invalid bit

10,468

00000

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.39COMPUTER SCIENCE DEPARTMENT

SHARED PAGES

39

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.40

Reentrant Code [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and
¤ Then safely called again ("re-entered") before its previous invocations

complete execution

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.41

Reentrant Code [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
① Execute same code at same time
② Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data

41

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.42

Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.43

Shared Paging
ed 1

ed 2

ed 3

Data 1

Data 3

Page n

Physical Memory

ed 1

ed 2

Data 2

…

0

1

2
3

4
5

6

7
8

9

3

6

1

4

3

6

7

4

Data 1

ed 3Process P1
ed 1

ed 2

ed 3

Data 2

Process P2

ed 1

ed 2

ed 3

Data 3

3

6

2

4

Process P3

Page Tables

43

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.44

Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
① Code must be reentrant
② The OS must enforce read-only nature of the shared code

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.45COMPUTER SCIENCE DEPARTMENT

PAGE SIZES

45

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.46

Paging and page sizes

¨ On average, ½ of the final page is empty
¤ Internal fragmentation: wasted space

¨ With n processes in memory, and a page size p
¤ Total np/2 bytes of internal fragmentation

¨ Greater page size = Greater fragmentation

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.47

But having small pages is not necessarily efficient

¨ Small pages mean programs need more pages
¤ Larger page tables
¤ 32 KB program needs

n 4 8-KB pages, but 64 512-byte pages

¨ Context switches can be more expensive with small pages
¤ Need to reload the page table

47

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.48

Transfers to-and-from disk are a page at a time

¨ Primary Overheads: Seek and rotational delays

¨ Transferring a small page almost as expensive as transferring a big
page
§ 64 x 15 = 960 msec to load 64 512-bytes pages
§ 4 x 25 = 100 msec to load 4 8KB pages

¨ Here, large pages make sense

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.49

Overheads in paging:
Page table and internal fragmentation

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n se/p: Total page table space

¨ Total Overhead = se/p + p/2

Page table overhead Internal fragmentation loss

49

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.50

Looking at the overhead a little closer

¨ Total Overhead = se/p + p/2

Increases if p is small Increases if p is large

• Optimum is somewhere in between

• First derivative with respect to p
 -se/p2 + ½ = 0 i.e. p2 = 2se
 p = √2se

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.51

Optimal page size: Considering only page size and
internal fragmentation

¨ p = sqrt(2se)

¨ s = 128KB and e=8 bytes per entry

¨ Optimal page size = 1448 bytes
¤ In practice we will never use 1448 bytes
¤ Instead, either 1K or 2K would be used

nWhy? Pages sizes are in powers of 2 i.e. 2X

n Deriving offsets and page numbers is also easier

51

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.52

Pages sizes and size of physical memory

¨ As physical memories get bigger, page sizes get larger as well

¤ Though not linearly

¨ Quadrupling physical memory size rarely even doubles page size

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L21.53

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8]

53

