
SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Shrideep Pallickara
Computer Science

Colorado State University

1

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.2

Frequently asked questions from the previous class
survey

¨ Finding an empty frame: How long does this typically take?

¨ When a process swap takes place between the disk and the RAM, is
the OS selective about which pages it copies over? Are there
redundant copies?

¨ How does an OS guess which pages will be used?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.3

Topics covered in this lecture

¨ Page replacement algorithms

¨ Page Buffering
¨ Frame Allocations

¨ Working Sets
¨ TLB Reach

3

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.4

How we got here …

Contiguous
Memory

Demand
Paging

Page
Faults

Page replacement
algorithms Page Buffering Frame

Allocation

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Working Sets

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.5COMPUTER SCIENCE DEPARTMENT

THE OPTIMAL PAGE REPLACEMENT
ALGORITHM

5

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.6

The optimal page replacement algorithm

¨ The best possible algorithm

¨ Easy to describe but impossible to implement

¨ Crux:
Put off unpleasant stuff for as long as possible

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.7

The optimal page replacement algorithm description

¨ When a page fault occurs some set of pages are in memory

¨ One of these pages will be referenced next
¤ Other pages may be not be referenced until 10, 100 or 1000 instructions later

¨ Label each page with the number of instructions to be executed before it
will be referenced
¤ When there is a page-fault, the page with the highest label should be removed

7

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.8

Problem with the optimal page replacement
algorithm

¨ It is unrealizable

¨ During a page fault, OS has no way of knowing when each of the
pages will be referenced next

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.9

So why are we looking at it?

¨ Run a program
¤ Track all page references

¨ Implement optimal page replacement on the second run
¤ Based on reference information from the first run

¨ Compare performance of realizable algorithms with the best possible
one

9

L24.10COMPUTER SCIENCE DEPARTMENT

LRU PAGE REPLACEMENTS

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.11

The Least Recently Used (LRU) page replacement
algorithm

¨ Approximation of the optimal algorithm

¨ Observation
¤ Pages used heavily in the last few instructions

n Probably will be used heavily in the next few

¤ Pages that have not been used
n Will probably remain unused for a long time

¨ When a page fault occurs?
¤ Throw out page that has been unused the longest

11

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.12

LRU example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Recent

Least
Used

0

7 0

7

1

1

0

2

2

1

0

0

2

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

0

2

3

3

0

2

2

3

1

1

3

2

2

1

0

0

2

1

1

0

7

7

1

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.13

Implementing LRU

¨ Logical clock

¨ Stacks

13

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.14

Using Logical clocks to implement LRU

¨ Each page table entry has a time-of-use field
¤ Entry updated when page is referenced

n Contents of clock register are copied

¨ Replace the page with the smallest value
¤ Time increases monotonically

nOverflows must be accounted for

¨ Requires search of page table to find LRU page

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.15

Stack based approach

¨ Keep stack of page numbers

¨ When page is referenced
¤ Move to the top of the stack

¨ Implemented as a doubly linked list

¨ No search done for replacement
¤ Bottom of the stack is the LRU page

15

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.16

Problems with clock/stack based approaches to LRU
replacements

¨ Inconceivable without hardware support
¤ Few systems provide requisite support for true LRU implementations

¨ Updates of clock fields or stack needed at every memory reference

¨ If we use interrupts and do software updates of data structures things
would be very slow
¤ Would slow down every memory reference

n At least 10 times slower

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.17COMPUTER SCIENCE DEPARTMENT

LRU APPROXIMATION PAGE
REPLACEMENTS

17

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.18

LRU Approximation:
Reference bit

¨ Reference bit associated with page table entries

¨ Reference bit is set by hardware when page is referenced
¤ Read/write access of the page

¨ Determine which page has been used and which has not
¤ No way of knowing the order of references though

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.19

LRU Approximation:
Additional reference bits

¨ Maintain 8-bit byte for each page in memory

¨ OS shifts the reference bit for page into the highest order bit of the
8-bit byte
¤ Operation performed at regular intervals
¤ The reference bit is then cleared

19

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.20

LRU approximation:
Reference bits

Shift
Register

Reference bit
for the page

Shift Register after the
OS timer interrupt

00000000 1 10000000

10010001 1 11001000

01100011 0 00110001

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.21

LRU Approximation:
Interpreting the reference bits

¨ Interpret 8-bit bytes as unsigned integers

¨ Page with the lowest number is the LRU page

¨ 00000000 : Not used in last 8 periods

¨ 01100101 : Used 4 times in the last 8 periods

¨ 11000100 used more recently than 01110111

21

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.22

The Second Chance Algorithm

¨ Simple modification of FIFO

¨ Avoids throwing out a heavily used page

¨ Inspect the reference bit of a page
¤ If it is 0: Page is old and unused

n Evict

¤ If it is 1: Page is given a second chance
n Move page to the end of the list

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.23

The Operation of second chance

A

0

B

3

C

7

D

8

E
12

F
14

G
15

H
18

Page Loaded
first

Most recently
loaded page

A

203 7 8

B C D E F G H
12 14 15 18

A is treated as a
newly loaded page

Page fault occurs at time 20 AND page A’s reference bit was set

23

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.24

Second chance

¨ Reasonable algorithm, but unnecessarily inefficient
¤ Constantly moving pages around on its list

¨ Better to keep pages in a circular list
¤ In the form of a clock …

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.25

Clock Page Replacement

¨ Keep all frames on a circular list in the form of a clock
¤ Hand points to the oldest page

¨ When a page fault occurs, page being pointed to by the hand is
inspected
¤ If its R bit is 0: the page is evicted

n New page is inserted into the clock in its place

n Hand is advanced one position

¤ If its R bit is 1
n It is cleared and advanced one position until a page is found with R =0

25

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.26

Counting based page replacements
Most Frequently Used (MFU)

¨ Argument:
Page with the smallest count was probably just brought in

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.27

Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging [Multiple reference bits] Efficient algorithm that approximates LRU well

27

L24.28COMPUTER SCIENCE DEPARTMENT

PAGE BUFFERING ALGORITHMS

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.29

Page Buffering

① Maintain a buffer of free frames

② When a page-fault occurs
¤ Victim frame chosen as before

¤ Desired page read into free-frame from buffer
n Before victim frame is written out

¤ Process that page-faulted can restart much faster

29

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.30

Page Buffering:
Being proactive

¨ Maintain a list of modified pages

¨ When the paging device is idle?
¤ Write modified pages to disk

¨ Implications
¤ If a page is selected for replacement increase likelihood of that page being

clean

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.31

Page Buffering: Reuse what you can

¨ Keep pool of free frames as before
¤ BUT remember which pages they held

¨ Frame contents are not modified when page is written to disk

¨ If page needs to come back in?
¤ Reuse the same frame, if it was not used to hold some other page

31

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.32

Buffering and applications

¨ Applications often understand their memory/disk usage better than
the OS
¤ Provide their own buffering schemes

¨ If both the OS and the application were to buffer
¤ Twice the I/O is being utilized for a given I/O

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.33COMPUTER SCIENCE DEPARTMENT

ALLOCATION OF FRAMES

33

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.34

Frame allocation: How do you divvy up free memory
among processes?

35 MB for the OS

93 MB for others

With demand paging all 93 frames would be in the free frame pool

Frame size = 1 MB; Total Size = 128 MB

2 processes at T0
 How are frames allocated?

128 MB

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.35

Constraints on frame allocation

¨ Max: Total number of frames in the system
¤ Available physical memory

¨ Min: We need to allocate at least a minimum number of frames
¤ Defined by the architecture of the underlying system

35

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.36

Minimum number of frames

¨ As you decrease the number of frames for a process
¤ Page fault increases
¤ Execution time increases too

¨ Defined by the architecture
¤ In some cases, instructions and operands (indirect references) straddle page

boundaries
n With 2 operands at least 6 frames needed

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.37COMPUTER SCIENCE DEPARTMENT

FRAME ALLOCATION POLICIES

37

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.38

Global vs Local Allocation

¨ Global replacement
¤ One process can take a memory frame from another process

¨ Local replacement
¤ Process can only choose from the set of frames that was allocated to it

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.39

Local vs Global replacement:
Based on how often a page is referenced

Pages

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

Usage
Count

10

7

5

3

9

4

2

6

3

5

6

Pages

A1

A2

A3

A5

B1

B2

B3

B4

C1

C2

C3
Local Replacement

Pages

A1

A2

A3

A4

B1

B2

A5

B4

C1

C2

C3
Global ReplacementProcesses A, B and C

Process A has
page faulted
and needs to
bring in a page

39

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.40

Global vs Local Replacement

Local Global

Number of frames
allocated to process

Fixed Varies dynamically

Can process control its
own fault rate? YES NO

Can it use free frames
that are available?

NO YES

Increases system
 throughput?

NO YES

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.41COMPUTER SCIENCE DEPARTMENT

WORKING SETS & THRASHING

41

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.42

Locality of References

¨ During any phase of execution, a process references a relatively small
fraction of its pages

¨ Set of pages that a process is currently using
¤ Working set

¨ Working set evolves during process execution

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.43

Implications of the working set

¨ If the entire working set is in memory
¤ Process will execute without causing many faults

n Until it moves to another phase of execution

¨ If the available memory is too small to hold the working set?
① Process will cause many faults
② Run very slowly

43

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.44

A program causing page faults every few
instructions is said to be thrashing

¨ System throughput plunges
¤ Processes spend all their time paging

¨ Increasing the degree of multiprogramming can cause this
¤ New process may steal frames from another process {Global Replacement}

n Overall page-faults in the system increases

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.45

Characterizing the affect of multiprogramming on
thrashing

C
PU

 U
til

iz
at

io
n

Degree of Multiprogramming

Thrashing

45

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.46

Mitigating the effects of thrashing

¨ Using a local page replacement algorithm
¤ One process thrashing does not cause cascading thrashing among other

processes

¤ BUT if a process is thrashing?
n Average service time for a page fault increases

¨ Best approach
① Track a process’ working set
② Make sure the working set is in memory before you let it run

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.47COMPUTER SCIENCE DEPARTMENT

WORKING SETS & THRASHING

47

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.48

Working set is an approximation of the program’s
locality

¨ Most important property of the working set is its size

Page reference table
...2 6 1 5 7 7 7 7 5 1 6 2 3 4 4 4 3 4 3 4 4 4 1 2 3 4 8

Δ Δ
WS = {1,2,5,6,7} WS = {3,4}

• WSSi = Working set size for process pi
• If total demand exceeds available frames
– Thrashing will occur

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.49

Working sets and page fault rates

¨ The peak in page-fault rate happens when a new locality is being
demand-paged

¨ Once working set is in memory
¤ Page fault rate falls

¨ When process moves towards a new working set window?
¤ Fault rate rises again

49

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.50

The page fault frequency approach to reducing
thrashing

¨ When the page fault rate is high
¤ Process needs more frames

¨ When the page fault rate is too low
¤ Process may have too many frames

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.51

Using page fault frequencies to control thrashing:
Establish bounds

Pa
ge

 F
au

lt
ra

te

Number of frames

Upper Bound

Lower Bound

Increase number of frames

Decrease number of frames

51

L24.52COMPUTER SCIENCE DEPARTMENT

OTHER CONSIDERATIONS

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.53

Prepaging: Loading pages BEFORE letting a process
run

¨ Bring into memory -- at one time -- all the pages that will be needed
¤ Prepage frames for small files

¨ With the working set model
¤ Ensure that the entire working set is in memory before the process is

resumed

53

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.54

TLB Reach is the amount of memory accessible from
the TLB

¨ TLB-Reach = Number of TLB entries x Page Size

¨ Approaches to increasing TLB reach
¤ Double the entries

n Expensive

¤ Increase page size
n Increases (internal) fragmentation

¤ Support multiple page sizes
n OS not hardware manages the TLB
n Increase reach and hit ratio

Current trend

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.55

Select data structures and program structures
efficiently

¨ Increase locality
¤ Reduce page fault rates

¨ Loops
¤ If data is stored in row-major format, but program reads it as column-major

format

¨ Loader should avoiding placing routines across page boundaries

55

VIRTUAL MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.56

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

56

