
SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

Shrideep Pallickara
Computer Science

Colorado State University

1

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.2

Frequently asked questions from the previous class
survey

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.3

Topics covered in this lecture

¨ Block Allocations
¤ Indexed allocations
¤ Linked allocations

¨ File Systems
¤ Unix File System/FFS
¤ FAT-32

3

L28.4COMPUTER SCIENCE DEPARTMENT

NOMENCLATURE

What’s in a name? That which we call a rose
By any other name would smell as sweet.
 —Juliet
 Romeo and Juliet (II, ii, 1-2)
 (Shakespeare)

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.5

Terminology

¨ Storage hardware arranges data in sectors (for magnetic disk) or
pages (for flash)

¨ File systems often group together a fixed number of disk sectors or
flash pages into a larger allocation unit called a block.
¤ E.g.: format file system to run on a disk with 512b sectors to use 4 KB blocks

¨ Windows FAT and NTFS refer to blocks as clusters

¨ File Control Block (FCBs) organize info about blocks comprising a file
¤ iNode in UFS and MFT Record in NTFS; Master File Table (MFT)

5

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.6

Allocation methods:
Objective and approaches

¨ How to allocate space for files such that:
¤ Disk space is utilized effectively
¤ File is accessed quickly

¨ Major Methods
¤ Contiguous
¤ Linked
¤ Indexed

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.7COMPUTER SCIENCE DEPARTMENT

INDEXED ALLOCATIONS

7

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.8

Indexed allocations

¨ Bring all pointers together into one location
¤ index block

¨ Each file has its own index block
¤ Directory contains address of the index block

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.9

Indexed allocation supports direct access without
external fragmentation

¨ Every disk block can be utilized
¤ No external fragmentation

¨ Space wasted by pointers is generally higher than linked listed
allocations
¤ Example: File has two blocks

n Linked listed allocations: 2 pointers are utilized

n Indexed allocations: Entire index block must be allocated

9

L28.10COMPUTER SCIENCE DEPARTMENT

iNODES

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.11

inode

¨ Fixed-length data structure
¤ One per file

¨ Contains information about
¤ File attributes

n Size, owner, creation/modification time etc.

¤ Disk addresses
n File blocks that comprise file

11

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.12

inode

¨ The inode is used to encapsulate information about a large number of
file blocks

¨ For e.g.
¤ Block size = 8 KB, and file size = 8 GB
¤ There would be a million file-blocks

n inode will store info about the pointers to these blocks

¤ inode allows us to access info for all these blocks
n Storing pointers to these file blocks also takes up storage

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.13

Managing information about data blocks in the
inode

¨ The first few pointers to the data blocks of the file stored in the inode

¨ If the file is large: Indirect pointer
¤ To a block of pointers that point to additional data blocks

¨ If the file is larger: Double indirect pointer
¤ Pointer to a block of indirect pointers

¨ If the file is huge: Triple indirect pointer
¤ Pointer to a block of double-indirect pointers

13

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.14

Schematic structure of the inode

File Attributes:
Size (bytes)
Owner UID/GID
Relevant times
Link and Block counts
Permissions

Direct pointers to first
few file blocks

Single indirect pointer

Double indirect
pointer

Triple indirect pointer

Pointers
to next

file blocks
Address of
disk block

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.15

i-Node: How the pointers to the file blocks are
organized

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node

Attributes

15

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.16

Disk Layout in traditional UNIX systems

Boot
Block

Super
Block

i-Nodes

. . .

Data Blocks

An integer number of inodes fit in a single data block

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.17

Super Block describes the state of the file system

¨ Total size of partition

¨ Block size and number of disk blocks
¨ Number of inodes

¨ List of free blocks
¨ inode number of the root directory

¨ Destruction of super block?
¤ Will render file system unreadable

17

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.18

A linear array of inodes follows the data block

¨ inodes are numbered from 1 to some max

¨ Each inode is identified by its inode number
¤ inode number contains info needed to locate inode on the disk
¤ Users think of files as filenames
¤ UNIX thinks of files in terms of inodes

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.19

UNIX directory structure

¨ Contains only file names and the corresponding inode numbers

¨ Use ls –i to retrieve inode numbers of the files in the directory

i-node
Number

File name

19

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.20

Directory entry, inode and data block for a simple
file

12345

i-node
Number

name1

File name

1

23567

.
.

.
.

Fragment of the
text in the file

Block 23567
inode 12345

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.21

Looking up path names in UNIX
Example: /usr/tom/mbox

1 .

1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

Root directory

Looking up usr
yields i-node 6

Mode, size
.. attributes

132

i-node 6
is for /usr

i-node 6 says
that /usr is in
block 132

6 .

1 ..

19 bob

30 eve

51 jim

26 tom

45 zac

Block 132 is
/usr directory

/usr/tom is in
 i-node 26

Mode, size
.. attributes

406

i-node 26
is /usr/tom

i-node 26 says
that /usr/tom
is in block 406

26 .

6 ..

64 grants

92 dev

60 mbox

81 docs

17 src

Block 406 is
/usr/tom dir

/usr/tom/mbox
 is in i-node 60

21

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.22

Advantages of directory entries that have name and
inode information

¨ Changing filename only requires changing the directory entry

¨ Only 1 physical copy of file needs to be on disk
¤ File may have several names (or the same name) in different directories

¨ Directory entries are small
¤ Most file info is kept in the inode

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.23

Two hard links to the same file

name112345

i-node File name

1

23567

.
.

.
.

Directory entry
in /dirA

Fragment of the
text in the file

Block 23567

inode 12345

23

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.24

Two hard links to the same file

12345 name1

i-node File name

2

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

12345 name2

i-node File name

Directory entry
in /dirB

Block 23567

inode 12345

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.25

File with a symbolic link

12345 name1

i-node File name

1

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

13579 name2

i-node File name

Directory entry
in /dirB

1

15213

.
.

.
.

Block 23567

“/dirA/name1”

Block 15213

inode 12345

inode 13579

25

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.26

Maximum size of your hard disk
(8 KB blocks and 32-bit pointers)

¨ 32-bit pointers can address 232 blocks

¨ At 8 KB per-block
¤ Hard disk can be 213 x 232 = 245 bytes (32 TB)

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.27

The case for larger block sizes

¨ Larger partitions for a fixed pointer size

¨ Retrieval is more efficient
¤ Better system throughput

¨ Problem
¤ Internal fragmentation

27

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.28

Limitations of a file system based on inodes

¨ File must fit in a single disk partition

¨ Partition size and number of files are fixed when system is set up

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.29

inode preallocation and distribution

¨ inodes are preallocated on a volume
¤ Even on empty disks % of space lost to inodes

¨ Preallocating inodes and spreading them
¤ Improves performance

¨ Keep file’s data block close to its inode
¤ Reduce seek times

29

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.30

Checking up on the iNodes:
The df –i command (disk free)

¨ inode statistics for a given set of file systems
¤ Total, free and used inodes

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.31

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

File Attributes:

Direct pointers to first
few file blocks

Single indirect pointer

Double indirect
pointer

Triple indirect pointer

128
bytes

68 bytes

3x4 = 12 bytes

Number of direct pointers?
48/4 = 12

128 – 68 – 12 =48

31

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.32

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

¨ 12 direct pointers to file blocks

¨ Each file block = 8KB

¨ Size of file that can be represented with direct pointers
§ 12 x 8 KB = 96 KB

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.33

inode

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node

Attributes

33

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.34

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

¨ Block size = 8 KB

¨ Single indirect block =block size = 8 KB (8192 bytes)

¨ Number of pointers held in a single-indirect-block
§ Block-size/Pointer-size
§ 8192/4 = 2048

¨ With single-indirect pointer
¤ Additional 2048 x 8 KB = 211 x 23 x 210 = 224 (16 MB) of a file can be

addressed

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.35

inode

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node

Attributes

35

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.36

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

¨ With a double indirect pointer in the inode
¤ The double-indirect block has 2048 pointers

n Each pointer points to a different single-indirect-block

n So, there are 2048 single-indirect blocks

¤ Each single-indirect block has 2048 pointers to file blocks

¨ Double indirect addressing allows the file to have an additional size
of
§ 2048 x 2048 x 8 KB = 211 x 211 x 23 x 210 = 235 …. (32 GB)

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.37

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

¨ Triple indirect addressing
¤ Triple indirect block points to 2048 double indirect blocks
¤ Each double indirect block points to 2048 single indirect blocks
¤ Each single direct block points to 2048 file blocks

¨ Allows the file to have an additional size of
§ 2048 x 2048 x 2048 x 8 KB = 211 x 235= 246 (64 TB)

37

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.38

Limits of triple indirect addressing

¨ In our example:
¤ There can be 2048 x 2048 x 2048 data blocks

¤ i.e., 211 x 211 x 211 = 233

¤ Pointers would need to be longer than 32-bits to fully address this storage

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.39

What if we increase the size of the pointers to 64-bits
(data block is still 8 KB) ?

¨ What is the maximum size of the file that we can hold?

¨ 8 KB data block can hold (8192/8) = 1024 pointers

¨ Single indirect can add
§ 1024 x 8 KB = 210 x 23 x 210 = 223 (8MB) of additional bytes to the file

39

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.40

What if we increase the size of the pointers to 64-bits
(data block is still 8 KB)?

¨ Double indirect addressing allows the file to have an additional size
of
§ 1024 x 1024 x 8 KB = 210 x 223= 233 …. (8 GB)

¨ Triple indirect addressing allows the file to have an additional size of
§ 1024 x 1024 x 1024 x 8 KB = 210 x 233= 243 (8 TB)

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.41COMPUTER SCIENCE DEPARTMENT

LINKED ALLOCATIONS

41

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.42

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

Linked Allocation: Each file is a linked list of disk
blocks

Physical
block

File
block
0

4

File A

File
block
3

14

File
block
2

11

File
block
1

3Physical
block

File
block
0

6

File B

Pointer to next block

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.43

Linked List Allocations:
Advantages

¨ Every disk block can be used
¤ No space is lost in external fragmentation

¨ Sufficient for directory entry to merely store disk address of first block
¤ Rest can be found starting there

43

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.44

Linked List Allocation:
Disadvantages

¨ Used effectively only for sequential accesses
¤ Extremely slow random access

¨ Space in each block set aside for pointers
¤ Each file requires slightly more space

¨ Reliability
¤ What if a pointer is lost or damaged?

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.45

Linked List Allocations: Reading and writing files is
much less efficient

¨ Amount of data storage in block is no longer a power of two
¤ Pointer takes up some space

¨ Peculiar size is less efficient
¤ Programs read/write in blocks that is a power of two

45

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.46

Linked list allocation: Take pointers from disk block
and put in table

10

11

7

3

2

12

14

0
1

2

3

4
5

6

7
8

9

10
11

12
13

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

File
block
0

4

EOF
Table tracks EVERY disk block in the system

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.47

Linked list allocation using an index/table

¨ Entire disk block is available for data

¨ Random access is much easier
¤ Chain must still be followed

n But this chain could be cached in memory

¨ MS-DOS and OS/2 operating systems
¤ Use such a file allocation table (FAT)

47

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.48

Linked list allocation using an index:
Disadvantages

¨ Table must be cached in memory for efficient access

¨ A large disk will have a large number of data blocks
¤ Table consumes a large amount of physical memory

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.49

FAT-32: Linked List Allocations using an index

¨ The Microsoft File Allocation Table (FAT) file system was first
implemented in the late 1970s
¤ Was the main file system for MS-DOS and early versions of Microsoft

Windows

¨ FAT-32, which supports volumes with up to 228 blocks and files with up
to 232 - 1 bytes

49

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.50

The FAT file system is named for its file allocation
table

¨ An array of 32-bit entries in a reserved area of the volume

¨ Each file in the system corresponds to a linked list of FAT entries
¤ Each FAT entry containing a pointer to the next FAT entry of the file (or a

special “end of file” value)

¨ The FAT has one entry for each block in the volume, and the file’s
blocks are the blocks that correspond to the file’s FAT entries:
¤ If FAT entry i is the jth FAT entry of a file, then storage block i is the jth data

block of the file

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.51

File numbers

¨ Directories map file names to file numbers

¨ In the FAT file system, a file’s number is the index of the file’s first entry
in the FAT

51

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.52

The FAT is also used for free space tracking

¨ If data block i is free, then FAT[i] contains 0

¨ Thus, the file system can find a free block by scanning through the FAT
to find a zeroed entry

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.53

The FAT file system is widely used because it is
simple and supported by many operating systems

¨ Many flash storage USB keys and camera storage cards use FAT
¤ Allowing them to be read and written by almost any computer running

almost any modern operating system

¨ Variations of the FAT file system are even used by applications for
organizing data within individual files
¤ For example, .doc files produced by versions of Microsoft Word from 1997

to 2007 are actually compound documents with many internal pieces
n The .doc format creates a FAT-like file system within the .doc file to manage the

objects in the .doc file

53

L28.54COMPUTER SCIENCE DEPARTMENT

FAT-32: LIMITATIONS

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.55

FAT-32 limitations: No support for hard links

¨ FAT represents each file as a linked list of 32-bit entries in the file
allocation table
¤ This representation does not include room for any other file metadata

¨ Instead, file metadata in stored with directory entries with the file’s
name
¤ This approach demands that each file be accessed via exactly one directory

entry, ruling out multiple hard links to a file

55

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.56

FAT-32 Limitations: Volume and File size

¨ FAT table entries are 32 bits, but the top four bits are reserved

¨ Thus, a FAT volume can have at most 228 blocks

¨ With 4 KB blocks, the maximum volume size is limited
¤ E.g., 228 blocks/volume × 212 bytes/block = 240 bytes/volume = 1 TB
¤ Block sizes up to 256 KB are supported, but they risk wasting large amounts

of disk space due to internal fragmentation

¨ Similarly, file sizes are encoded in 32 bits, so no file can be larger
than 232 - 1 bytes (just under 4 GB)

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FILE SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.57

The contents of this slide-set are based on the
following references
¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall

ISBN-13: 978-0-13-042411-2. [Chapter 4]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 13]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 4]

57

