
SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESSES]

Shrideep Pallickara
Computer Science

Colorado State University

1

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.2

Frequently asked questions from the previous class
survey
¨ PCB:

¤ Hardwar? Where is it stored?

¨ Process in memory
¤ Where is the stack/heap? How fast is the access to it?

¨ Vertical vs horizontal scaling
¨ What if there is only process that is ready? Will the CPU keep running it?
¨ What happens at the CPU when there is a context switch?
¨ Are processIDs tied to a process forever?
¨ Can the CPU minimize context switching time?
¨ Where is the PCB stored?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.3

Topics covered in this lecture

¨ Operations on processes
¤Creation
¤ Termination

¨ Process groups

¨ Buffer Overflows
¤One of the greatest security violations of all time

3

COMPUTER SCIENCE DEPARTMENT

OPERATIONS ON PROCESSES

Processes execute concurrently
Can be created and deleted dynamically.

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.5

Process Creation: A process may create new
processes during its execution

¨ Parent process: The creating process

¨ Child process: New process that was created
¤May itself create processes: Process tree

¨ All processes have unique identifiers
¤Processes have names; in most systems, this is a number (process ID)
¤ There is one ID per process

5

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.6

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.7

Processes in UNIX

¨ init : Root parent process for all user processes

¨ Get a listing of processes with ps command
§ ps: List of all processes associated with user
§ ps –a : List of all processes associated with terminals
§ ps –A : List of all active processes

7

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.8

Resource sharing between a process and its
subprocess

¨ Child process may obtain resources directly from OS

¨ Child may be constrained to a subset of parent’s resources
¤Prevents any process from overloading system

¨ Parent process also passes along initialization data to the child
¤Physical and logical resources

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.9

Parent/Child processes:
Execution possibilities

¨ Parent executes concurrently with children

¨ Parent waits until some or all of its children terminate

9

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.10

Parent/Child processes:
Address space possibilities

¨ Child is a duplicate of the parent
¤Same program and data as parent

¨ Child has a new program loaded into it

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

FORK()
All processes in UNIX are created using the fork() system call.

When you come to a fork in the road, take it.
Yogi Berra.

11

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.12

Process creation in UNIX

¨ Process created using fork()
¤fork() copies parent’s memory image
¤ Includes copy of parent’s address space

¨ Parent and child continue execution at instruction after
fork()
¤Child: Return code for fork() is 0
¤Parent: Return code for fork() is the non-ZERO process-ID of new

child

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.13

fork() results in the creation of 2 distinct processes

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will
execute
from here

?
Do the parent and child
process share a stack or
heap?

13

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.14

Simple example:

#include <stdio.h>
#include <unistd.h>

int main(void) {
 int x;
 x=0;
 fork();
 x=1;
 …
}

Both parent and child
execute this after
returning from fork()

? Why is this the case?

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.15

Another example
#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 fork();
 printf(“Hello World\n”);
 }

#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 if (fork()==0) {
 printf(“Hello World\n”);
 }
}

Hello World
Hello World
Hello World

Hello World
Hello World

? How many hello worlds?

? How many hello worlds?

15

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.16

What happens when fork() fails?

¨ No child is created

¨ fork() returns -1 and sets errno
¤errno is a global variable in errno.h

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.17

If a system is short on resources OR
if limit on number of processes breached

¨ fork() sets errno to EAGAIN

¨ Some typical numbers for Solaris
§ maxusers: 2 less than number of MB of physical memory up to 1024

n Set up to 2048 manually in /etc/system file

§ mx_nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

17

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.18

Take different paths depending on what happens
with fork()
childpid = fork();
if (childpid == -1) {
 perror(“Failed to fork”);
 return 1;
}
if (childpid == 0) {
 ….. child specific processing
} else {
 ….. parent specific processing
}

Child (any process) can use
getpid() to retrieve
its process ID

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.19

Creating a chain of processes

for (int i=1; i < 4; i++) {
 if (childid = fork()) {
 break;
 }
}

For each iteration:
Parent has non-ZERO childid
 So it breaks out

Child process
 Parent in NEXT iteration

1

2

3

4

value of i
when process leaves loop

19

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.20

Creating a process fan

for (int i=1; i < 4; i++) {
 if ((childid = fork()) <= 0) {
 break;
 }
}

Newly created process breaks out
Original process continues

4

1 2 3

value of i
when process leaves loop

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.21

Creation of a process tree
int i=0;
for (i=1; i < 4; i++) {
 if ((childid = fork()) == -1) {
 break;
 }
}

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same i

Both parent and child
 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

21

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.22

Replacing a process’s memory space with a new
program

¨ Use exec() after the fork() in one of the two processes

¨ exec() does the following:
① Destroys memory image of program containing the call
② Replaces the invoking process’s memory space with a new program
③ Allows processes to go their separate ways

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.23

Replacing a process’s memory space with a new
program

¨ TRADITION:
¤Child executes new program
¤Parent executes original code

23

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.24

Launching programs using the shell is a two-step
process

¨ Example: user types ls on the shell

① Shell forks off a child process

② Child executes ls

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.25

But why is this the case?

¨ Allows the child to manipulate its file descriptors
¤After the fork()
¤But before the exec()

¨ Accomplish redirection of standard input, standard output, and
standard error

25

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.26

A parent can move itself from off the ready queue
and await child’s termination

¨ Done using the wait() system call.
¨ When child process completes, parent process resumes

fork()

wait()

exec() exit()

resumes
parent

child

Return value = Non-ZERO
 child PID

Return value=ZERO

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.27

wait/waitpid allows caller to suspend execution till
a child’s status is available

¨ Process status availability
¤Most commonly after termination
¤Also available if process is stopped

¨ waitpid(pid, *stat_loc, options)

§ pid== -1 : any child
§ pid > 0 : specific child
§ pid == 0 : any child in the same process group

§ pid < -1 : any child in process group abs(pid)

27

COMPUTER SCIENCE DEPARTMENT

PROCESS CREATION IN WINDOWS

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.29

Process creation in Windows

¨ CreateProcess handles

① Process creation

② Loading in a new program

¨ Parent and child’s address spaces are different from the start

29

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.30

CreateProcess takes up to 10 parameters

¨ Program to be executed

¨ Command line parameters that feed program

¨ Security attributes

¨ Bits that control whether files are inherited

¨ Priority information

¨ Window to be created?

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.31

Process Management on Windows

¨ WIN 32 has about 100 other functions
¤Managing & Synchronizing processes

31

COMPUTER SCIENCE DEPARTMENT

PROCESS GROUPS

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.33

Process groups

¨ Process group is a collection of processes

¨ Each process has a process group ID

¨ Process group leader?
¤Process with pid==pgid

¨ kill treats negative pid as pgid
¤Sends signal to all constituent processes

33

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.34

Process Group IDs:
When a child is created with fork()

① Inherits parent’s process group ID

② Parent can change group ID of child by using setpgid

③ Child can give itself new process group ID
¤ Set process group ID = its process ID

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.35

Process groups

¨ By default, comprises:
① Parent (and further ancestors)

② Siblings

③ Children (and further descendants)

¨ A process can only send signals to members of its process
group
¤Signals are a limited form of inter-process communication used in Unix

35

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.36

Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤When a process is created, parent is given a special token (called

handle)
n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROCESS TERMINATIONS

37

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.38

Process terminations

¨ Normal exit (voluntary)
¤ E.g., successful compilation of a program

¨ Error exit (voluntary)
¤ E.g., trying to compile a file that does not exist

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.39

Process terminations

¨ Fatal error (involuntary)
¤Program bug

n Referencing non-existing memory, dividing by zero, etc

¨ Killed by another process (involuntary)
¤ Execute system call telling OS to kill some other process
¤Killer must be authorized to do in the killee
¤Unix: kill Win32: TerminateProcess

39

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.40

Process terminations:
This can be either normal or abnormal

¨ OS deallocates the process resources
¤Cancel pending timers and signals
¤Release virtual memory resources and locks
¤Close any open files

¨ Updates statistics
¤Process status and resource usage

¨ Notifies parent in response to a wait()

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.41

On termination a UNIX process DOES NOT fully release resources
until a parent waits for it

¨ If the parent is not waiting when the child terminates?
¤ The process becomes a zombie

¨ Zombie is an inactive process
¤Still has an entry in the process table

41

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.42

Zombies and termination

¨ When a process terminates, its orphaned children and zombies
are adopted
¤ This special system process is init

¨ Some more about init
① Has a pid of 1

② Periodically waits for children

③ Eventually orphaned zombies are removed

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.43

Normal termination of processes

¨ Return from main

¨ Implicit return from main
¤ Function falls off the end

¨ Call to exit, _Exit or _exit

43

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.44

Abnormal termination

¨ Call abort

¨ Process signal that causes termination
¤Generated by an external event: keyboard Ctrl-C
¤ Internal errors: Accessing illegal memory location

¨ Consequences
¤Core dump
¤User-installed exit handler not called

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROTECTION & SECURITY

45

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.46

Protection and Security

¨ Control access to system resources
¤ Improve reliability

¨ Defend against use (misuse) by unauthorized or incompetent users

¨ Examples
¤ Ensure process executes within its own space
¤ Force processes to relinquish control of CPU
¤ Device-control registers accessible only to the OS

n E.g., Why the Security of USB Is Fundamentally Broken
https://www.wired.com/2014/07/usb-security/

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.47

Buffer overflows:

¨ When? Program copies data into a variable for which it has
not allocated enough space

char buf[80];
printf(“Enter your first name:”);
scanf(“%s”, buf);

If user enters string > 79 bytes ?
 – The string AND string terminator do not fit.

47

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.48

Buffer Overflows:
Fixing the example problem

char buf[80];
printf(“Enter your first name:”);
scanf(“79%s”, buf);

Program now reads at most 79 characters into buf

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.49

Automatic variables (local variables)

¨ Allocated/deallocated automatically when program flow enters
or leaves the variable’s scope

¨ Allocated on the program stack

¨ Stack grows from high-memory to low-memory

49

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.50

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

0

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.51

A rough anatomy of the program stack

base

top

1024

1000
{Local variables}

{Unused gaps may exist}

{return address}

To align things on the
word boundary

51

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.52

A function that checks password: Susceptible to
buffer overflow

int checkpass(void) {
 int x;
 char a[9];
 x =0;
 printf(“Enter a short word: ”);
 scanf(“%s”, a);
 if (strcmp(a, “mypass”) == 0)
 x =1;
 return x;
}

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.53

Stack layout for our unsafe function

base

top

1024

1000

a

Unused

return address

saved frame pointer
1020

1016
x

1012

1009

Overflow can
change the value of x

A long password may
overwrite this too

53

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.54

Problems with buffer overflow

¨ Function will try to return to an address space outside the
program
¤Segmentation fault or core dump
¤Programs may lose unsaved data
¤ In the OS, such a function can cause the OS to crash!

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.55

One of the greatest security violations of all time:
November 2, 1988

¨ Exploited 2 bugs in Berkeley UNIX

¨ Worm: Self replication program

¨ Bought down most of the Sun and VAX systems on the internet
within a few hours

55

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.56

Worm had two programs

① Bootstrap (99 lines of C, l1.c)

② Worm proper

¨ Both these programs compiled and executed on the system
under attack

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.57

Synopsis of the worm’s modus operandi

① Spread the bootstrap to machines

② Once the bootstrap runs:
¤ Connects back to its origins
¤ Download worm proper
¤ Execute worm

③ Worm then attempts to spread bootstrap

57

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.58

Infecting new machines: Method 1 & 2
Violate trust

¨ Method 1: Run the remote shell rsh
¤Machines used to trust each other, and would willingly run it
¤Use this to upload the worm

¨ Method 2: sendmail

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.59

Method 3: Buffer overflow in the finger daemon
(finger name@site)

¨ finger daemon runs all the time on sites, and responds to
queries

¨ The worm called finger with a handcrafted 536-byte string as
a parameter.
¤Overflowed daemon’s buffer & overwrote its stack

¨ Daemon did not return to main(), but to a procedure in the
536-bit string on stack

¨ Next try to get a shell by executing /bin/sh

59

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.60

Far too many worms can grind things to a halt

¨ Break user passwords

¨ Check for copies of worm on machine
¤ Exit if there is a copy 6 out of 7 times

n This is in place to cope with a situation where sys admin starts fake worm to fool
the real one

¨ Use of 1 in 7 caused far too worms
¤Machines ground to a halt

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.61

Consequences

¨ $10K fine, 3 years probation and 400 hours community service

¨ Legal costs $150,000

61

PROCESSESCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.62

The contents of the slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620 [Chapter 2]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

¨ CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C
by Rink Dewri. Professor: Shrideep Pallickara, GTA: Rinku Dewri

62

