CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Address space: What is it?
exec():
How does it replace parent? What does it do in terms of running shell?
Does the program you load have a memory image?
Fork():
How expensive is it2 Isn't the coping only to discard wasteful?
Do children “see” other children?
Other ways in which process creation can fail?
When would a parent not “wait”?
Process ID:
What determines the ID?
What's the point of “kill”-ing a process?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

fork (): An example output
|

int child pid = fork();

if (child pid == 0) { // I'm the child process.
printf("I am process #%d\n", getpid());
return 0;

} else { // I'm the parent process.
printf ("I am the parent of process #%d\n", child pid);
return 0;

}

Possible output:
| am the parent of process 495
| am process 495

Another less likely but still possible output:
| am process 456
| am the parent of process 456

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.3

3

Topics covered in this lecture
|

1 Shells and Daemons
o POSIX

1 Inter Process Communications

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Nota Bene

o Keyboard
o1 Screen

o File

= Device

o Pipe

71 The commands to read and write to an open file descriptor are
the same whether the file descriptor represents a

71 UNIX programs do not need to be aware of where their input is
coming from, or where their output is going

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.5

5

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

Shell: Command interpreter

01 Prompts for commands

71 Reads commands from standard input
o forks children to execute commands
T Waits for children to finish

1 When standard I /0 comes from terminal

Terminate command with the interrupt character

m Default Ctrl-C

Professor: SHRIDEEP PALLICKARA

2
N

Background processes?

INTER-PROCESS COMMUNICATIONS L5.7

7

main() {
char *prog = NULL;
char **args = NULL;

// Read the input a line at a time, and parse each line into the program

// name and its arguments. End loop if we've reached the end of the input.

while (readAndParseCmdline(&prog, &args)) {

// Create a child process to run the command.
int child_pid = fork();

if (child_pid == 0) {
// I'm the child process.

// Run program with the parent’s input and output.

exec(prog, args);
// NOT REACHED

} else {
// I'm the parent; wait for the child to complete.
wait(child_pid);
return O;

}

}
}

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Background processes and daemons

Shell interprets commands ending with & as a background
process
No waiting for process to complete
Issue prompt immediately
Accept new commands

Ctrl-C has no effect

Daemon is a background process

Runs indefinitely 9

= Servers?

N—

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.9

9

POSIX

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Portable Operating Systems Interface for UNIX
(POSIX)

2 distinct, incompatible flavors of UNIX existed
System V from AT&T
BSD UNix from Berkeley

Programs written for one type of UNIX

Did not run correctly (sometimes even compile) on UNIX from another
vendor

Pronounced pahz-icks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.11

11

|IEEE attempt to develop a standard for UNIX
libraries

POSIX.1 published in 1988

Covered a small subset of UNIX

In 1994, X/Open Foundation had a much more comprehensive
effort

Called Spec 1170
Based on System V

Inconsistencies between POSIX.1 and Spec 1170

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The path to the final POSIX standard

1998
Another version of the X/Open standard
Many additions to POSIX.1

Austin Group formed
Open Group, IEEE POSIX, and ISO/IEC tech committee
International Standards Organization (ISO)
International Electrotechnical Commission (IEC)

Revise, combine and update standards

COLDRADO STATE UNIVERSITY 88;§8;:;R§§;LAéIEC%E:ARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.13
13
The path to the final POSIX standard:
Joint document
Approved by IEEE & Open Group
End of 2001
ISO/IEC approved it in November 2002
Single UNIX spec
Version 3, IEEE Standard 1003.1-2001
POSIX
L5.14

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

If you write for POSIX-compliant systems

71 No need to contend with small, but critical variations in library
functions

Across platforms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.15

15

INTER PROCESS COMMUNICATIONS (IPC)

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Independent and Cooperating processes

Independent: CANNOT affect or be affected by other processes

Cooperating: CAN affect or be affected by other processes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.17

17

Why have cooperating processes?

Information sharing

Computational speedup

Sub tasks for concurrency
Modularity
Convenience: Do multiple things in parallel

Privilege separation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

and information
o

-1 Shared memory
Establish memory region to be shared

Read and write to the shared region

1 Message passing

Communications through message exchange

Cooperating processes need IPC to exchange data

? Which is faster?
N—

COLDRADO STATE UNIVERSITY ggfr\;;ﬁ?lzs;kgéﬁszggmmENT INTER-PROCESS COMMUNICATIONS ~ L5.19
19
L]
Contrasting the two IPC approaches
(B
process A M m——— process A j
shared memory
process B m
— process B
kernel M kernel
Easier to implement Maximum speed
Best for small amounts of data .
. . System calls to establish shared memory
Kernel intervention for communications
L5.20

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Shared memory systems

Shared memory resides in the address space of process
creating it

Other processes must attach segment to their address space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.21

21

Using shared memory

But the OS typically prevents processes from accessing each
other’s memory, so ...

(1) Processes must agree to remove this restriction

(2) Processes also coordinate access to this region

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Let’s look a little closer at cooperating processes
Producer-consumer problem is a good exemplar of such
cooperation

Producer process produces information

Consumer process consumes this information

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.23

23

One solution to the producer-consumer problem uses
shared-memory

Buffer is a shared-memory region for the 2 processes

Buffer needed to allow producer & consumer to run
concurrently
Producer fills it

Consumer empties it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Buffers and sizes

Bounded: Assume fixed size
Consumer waits if buffer is empty

Producer waits if buffer is full

Unbounded: Unlimited number of entries

Only the consumer waits WHEN buffer is empty

COLDRADO STATE UNIVERSITY gg;ﬁﬁ;é;kggﬁszggmmENT INTER-PROCESS COMMUNICATIONS ~ L5.25
25
[]
Circular buffer: Bounded
After consuming: {in=0, out=0} After producing:
out=(out+1) $BUFFER_SIZE . in=(in+1) $BUFFER SIZE
el N {in=1, out=0}
7 - 1
/ =\
6 2 {in=2, out=0}
5 3
in: next free position (producer) o
out: first full position (conPsu]!ner) s .
COLORADO STATE UNIVERSITY Gopmoren Soence Diparrvent INTER-PROCESS COMMUNICATIONS L5.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded
|

After consuming: After producing:
out=(out+1) $BUFFER SIZE in=(in+1) $BUFFER_SIZE

0
. /v\ y (in=2, out=1}

[T

6

5 3
in: next free position (producer) -

out: first full position (conPsaner) SR PALICKARA
roressor:
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

L5.27
27
[]
Circular buffer: Bounded
[
After consuming: After producing:
out=(out+1) $BUFFER_SIZE . in=(in+1) $BUFFER SIZE
/ — \
7 1
6 2 {in=2, out=2}
5 3 After consuming
4 Buffer is EMPTY
. =
in: next free position (producer)
out: first full position (conPsu]!ner) s .
COLORADO STATE UNIVERSITY Gopmoren Soence Diparrvent INTER-PROCESS COMMUNICATIONS L5.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Circular buffer: Bounded
|

After consuming: After producing:
out=(out+1) $BUFFER_SIZE {in=1, out=2}in=(in+1)%BUFFER_SIZE

7/3\1

[I

— 2 {in=3, out=2}

—
= 3 {in=4, out=2}

e

in: next free position (producer)

out: first full position (conPsaner) s .
COLDRADO STATE UNIVERSITY ({SGESG?E;R&EI;NA&LEKSE’;ARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.29
29
[]
Circular buffer: Bounded
(B
After consuming: After producing:
out=(out+1) %BUFFER_SIZE 0 in=(in+1) %BUFFER_SIZE
/ — \
7 - 1 {in:Z, Out:2}
6 mm - 2
— L]
5 — 3
\ / After producing:
4 (in+l) $BUFFER_SIZE==out
in: next free position (producer) - Buffer is FULL
out: first full position (consumer)
L5.30

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER PROCESS COMMUNICATIONS
SHARED MEMORY

COMPUTER SCIENCE DEPARTMENT

COLORADO STATE UNIVERSITY

31

POSIX IPC: Shared Memory

Creating a memory segment to share

First create shared memory segment shmget ()
shmget (1pC PRIVATE, size, S IRUSR | S IWUSR)
= IPC_PRIVATE: key for the segment

* size: size of the shared memory

= S IRUSR|S IWUSR: Mode of access (read, write)

Successful invocation of shmget ()

Returns integer ID of shared segment

Needed by other processes that want to use region

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

L5.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Processes wishing to use shared memory must first
attach it to their address space

Done using shmat (): SHared Memory ATtach

Returns pointer to beginning location in memory

(void *) shmat(id, asmP, mode)
id: Integer ID of memory segment being attached
asmP: Pointer location to attach shared memory
NULL allows OS to select location for you

Mode indicating read-only or read-write

@: reads and writes to shared memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.33

33

IPC: Use of the created shared memory

Once shared memory is attached to the process’s address space

Routine memory accesses using * from shmat ()

Write to it
sprintf (shared memory, "“Hello”);

Print string from memory
printf (“*%s\n”, shared memory) ;

RULE: First attach, and then access

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

IPC Shared Memory:
What to do when you are done

(D) Detach from the address space.
shmdt () :SHared Memory DeTtach
shmdt (shared memory)

(@) To remove a shared memory segment
shmctl () : SHared Memory ConTroL operation

Specify the segment ID to be removed
Specify operation to be performed: IPC_RMID

Pointer to the shared memory region

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.35

35
INTER PROCESS COMMUNICATIONS
MESSAGE PASSING
CoMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Communicate and synchronize actions without

sharing the same address space
|

1 Two main operations

send (message)
receive (message)

[Message sizes can be:
Fixed: Easy

Variable: Little more effort

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

L5.37

37

Communications between processes

[
1 There needs to be a communication link

01 Underlying physical implementation
Shared memory
Hardware bus

Network

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS

L5.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Aspects to consider for IPC

(D Communications

Direct or indirect

(@ Synchronization

Synchronous or asynchronous

(3 Buffering

Automatic or explicit buffering

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.39

39

Communications: Naming allows processes to refer to
each other

Processes use each other’s identity to communicate

Communications can be
Direct

Indirect

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Direct communications

Explicitly name recipient or sender

Link is established automatically

Exactly one link between the 2 processes

Addressing

Symmetric

Asymmetric

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.41

41

Direct Communications:
Addressing

* Symmetric addressing € EXplicitly name recipient
Y 9 and sender of message
e send (P, message)

* receive (Q, message)

® Asymme’rric oddressing €~ Only sender names recipient
Recipient does not
—send (P, message)
—receive (id, message)

* Variable id set to name of the sending process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Direct Communications: Disadvantages

Limited modularity of process definitions

Cascading effects of changing the identifier of process

Examine all other process identifiers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.43

43

Indirect communications: Message sent and received
from mailboxes (ports)

Each mailbox has a unique identification & owner

POSIX message queues use integers to identify mailboxes

Processes communicate only if they have shared mailbox
send (A, message)

receive (A, message)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Indirect communications: Link properties

Link established only if both processes share mailbox

Link may be associated with more than two processes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.45

45

Indirect communications

Processes P1, P2 and P3 share mailbox A

P1 sends a message to A

P2, P3 execute a receive () from A

Possibilities¢ Allow ...
(1) Link to be associated with at most 2 processes

(2) At most 1 process to execute receive () at a time

(3) System to arbitrarily select who gets message

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Mailbox ownership issues

Owned by process
Owned by the OS

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.47

47

Mailbox ownership issues:
Owned by process

Mailbox is part of the process’s address space
Owner: Can only receive messages on mailbox

User: Can only send messages to mailbox

When process terminates?

Mailbox disappears

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Mailbox ownership issues:
Owned by OS

Mailbox has its own existence

Mailbox is independent

Not attached to any process

OS must allow processes to
Create mailbox
Send and receive through the mailbox

Delete mailbox

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.49

49

Message passing: Synchronization issues
Options for implementing primitives

Blocking send

Block until received by process or mailbox

Nonblocking send

Send and promptly resume other operations

Blocking receive
Block until message available

Nonblocking receive
Retrieve valid message or null

Producer-Consumer problem: Easy with blocking

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Message Passing: Buffering

Messages exchanged by communicating processes reside in a
temporary queve

Implementation schemes for queues
ZERO quqcny 2 When does a consumer wait?
Bounded e '
Unbounded

? When does a producer wait?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.51

51

Message Passing Buffer:
Consumer always has to wait for message

ZERO capacity: No messages can reside in queue

Sender must block till recipient receives

BOUNDED: At most n messages can reside in queue

Sender blocks only if queue is full

UNBOUNDED: Queue length potentially infinite

Sender never blocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS ~ L5.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuUTER SCIENCE DEPARTMENT INTER-PROCESS COMMUNICATIONS L5.53

53

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.27

