
SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Shrideep Pallickara
Computer Science

Colorado State University

1

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.2

Frequently asked questions from the previous class
survey
¨ Address space: What is it?
¨ exec():

¤ How does it replace parent? What does it do in terms of running shell?
¤ Does the program you load have a memory image?

¨ Fork():
¤ How expensive is it? Isn’t the coping only to discard wasteful?
¤ Do children “see” other children?
¤ Other ways in which process creation can fail?
¤ When would a parent not “wait”?

¨ Process ID:
¤ What determines the ID?
¤ What’s the point of “kill”-ing a process?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.3

fork(): An example output
int child_pid = fork();

 if (child_pid == 0) { // I’m the child process.
 printf("I am process #%d\n", getpid());
 return 0;
 } else { // I’m the parent process.
 printf("I am the parent of process #%d\n", child_pid);
 return 0;
 }

 Possible output:
 I am the parent of process 495
 I am process 495

 Another less likely but still possible output:
 I am process 456
 I am the parent of process 456

3

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.4

Topics covered in this lecture

¨ Shells and Daemons

¨ POSIX

¨ Inter Process Communications

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.5

Nota Bene

¨ The commands to read and write to an open file descriptor are
the same whether the file descriptor represents a
¤Keyboard
¤Screen
¤ File
¤Device
¤Pipe

¨ UNIX programs do not need to be aware of where their input is
coming from, or where their output is going

5

COMPUTER SCIENCE DEPARTMENT

SHELLS AND DAEMONS

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.7

Shell: Command interpreter

¨ Prompts for commands

¨ Reads commands from standard input

¨ forks children to execute commands

¨ Waits for children to finish

¨ When standard I/O comes from terminal
¤ Terminate command with the interrupt character

n Default Ctrl-C
? Background processes?

7

main() {
 char *prog = NULL;
 char **args = NULL;

 // Read the input a line at a time, and parse each line into the program
 // name and its arguments. End loop if we’ve reached the end of the input.
 while (readAndParseCmdLine(&prog, &args)) {

 // Create a child process to run the command.
 int child_pid = fork();

 if (child_pid == 0) {
 // I’m the child process.
 // Run program with the parent’s input and output.
 exec(prog, args);
 // NOT REACHED
 } else {
 // I’m the parent; wait for the child to complete.
 wait(child_pid);
 return 0;
 }
 }
 }

Si
m

pl
e

Sh
el

l

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.9

Background processes and daemons

¨ Shell interprets commands ending with & as a background
process
¤No waiting for process to complete
¤ Issue prompt immediately

n Accept new commands

¤ Ctrl-C has no effect

¨ Daemon is a background process
¤Runs indefinitely ? Servers?

9

COMPUTER SCIENCE DEPARTMENT

POSIX

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.11

Portable Operating Systems Interface for UNIX
(POSIX)

¨ 2 distinct, incompatible flavors of UNIX existed
¤System V from AT&T
¤BSD UNIX from Berkeley

¨ Programs written for one type of UNIX

¤Did not run correctly (sometimes even compile) on UNIX from another
vendor

¨ Pronounced pahz-icks

11

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.12

IEEE attempt to develop a standard for UNIX
libraries

¨ POSIX.1 published in 1988
¤Covered a small subset of UNIX

¨ In 1994, X/Open Foundation had a much more comprehensive
effort
¤Called Spec 1170
¤Based on System V

¨ Inconsistencies between POSIX.1 and Spec 1170

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.13

The path to the final POSIX standard

¨ 1998
¤Another version of the X/Open standard
¤Many additions to POSIX.1
¤Austin Group formed

n Open Group, IEEE POSIX, and ISO/IEC tech committee
n International Standards Organization (ISO)
n International Electrotechnical Commission (IEC)

n Revise, combine and update standards

13

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.14

The path to the final POSIX standard:
Joint document

¨ Approved by IEEE & Open Group
¤ End of 2001

¨ ISO/IEC approved it in November 2002

¨ Single UNIX spec
¤Version 3, IEEE Standard 1003.1-2001
¤POSIX

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.15

If you write for POSIX-compliant systems

¨ No need to contend with small, but critical variations in library
functions
¤Across platforms

15

COMPUTER SCIENCE DEPARTMENT
INTER PROCESS COMMUNICATIONS (IPC)

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.17

Independent and Cooperating processes

¨ Independent: CANNOT affect or be affected by other processes

¨ Cooperating: CAN affect or be affected by other processes

17

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.18

Why have cooperating processes?

¨ Information sharing

¨ Computational speedup
¤Sub tasks for concurrency

¨ Modularity

¨ Convenience: Do multiple things in parallel

¨ Privilege separation

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.19

Cooperating processes need IPC to exchange data
and information

¨ Shared memory
¤ Establish memory region to be shared
¤Read and write to the shared region

¨ Message passing
¤Communications through message exchange

? Which is faster?

19

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.20

Contrasting the two IPC approaches

process A

process B

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement
Best for small amounts of data
Kernel intervention for communications

Maximum speed
System calls to establish shared memory

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.21

Shared memory systems

¨ Shared memory resides in the address space of process
creating it

¨ Other processes must attach segment to their address space

21

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.22

Using shared memory

¨ But the OS typically prevents processes from accessing each
other’s memory, so …

① Processes must agree to remove this restriction

② Processes also coordinate access to this region

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.23

Let’s look a little closer at cooperating processes

¨ Producer-consumer problem is a good exemplar of such
cooperation

¨ Producer process produces information

¨ Consumer process consumes this information

23

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.24

One solution to the producer-consumer problem uses
shared-memory

¨ Buffer is a shared-memory region for the 2 processes

¨ Buffer needed to allow producer & consumer to run
concurrently
¤Producer fills it
¤Consumer empties it

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.25

Buffers and sizes

¨ Bounded: Assume fixed size
¤Consumer waits if buffer is empty
¤Producer waits if buffer is full

¨ Unbounded: Unlimited number of entries
¤Only the consumer waits WHEN buffer is empty

25

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.26

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=0, out=0}

{in=1, out=0}

{in=2, out=0}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.27

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=2, out=1}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

27

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.28

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=2, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

After consuming
in == out
Buffer is EMPTY

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.29

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=3, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=4, out=2}

{in=1, out=2}

29

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.30

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=2, out=2}

After producing:
(in+1)%BUFFER_SIZE==out
Buffer is FULL

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

INTER PROCESS COMMUNICATIONS
SHARED MEMORY

31

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.32

POSIX IPC: Shared Memory
Creating a memory segment to share

¨ First create shared memory segment shmget()
shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR)
§ IPC_PRIVATE: key for the segment
§ size: size of the shared memory
§ S_IRUSR|S_IWUSR: Mode of access (read, write)

¨ Successful invocation of shmget()
¤Returns integer ID of shared segment

n Needed by other processes that want to use region

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.33

Processes wishing to use shared memory must first
attach it to their address space

¨ Done using shmat(): SHared Memory ATtach
¤Returns pointer to beginning location in memory

¨ (void *) shmat(id, asmP, mode)
§ id: Integer ID of memory segment being attached
§ asmP: Pointer location to attach shared memory

§ NULL allows OS to select location for you

§ Mode indicating read-only or read-write
§ 0: reads and writes to shared memory

33

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.34

IPC: Use of the created shared memory

¨ Once shared memory is attached to the process’s address space
¤Routine memory accesses using * from shmat()

n Write to it
n sprintf(shared_memory, “Hello”);

n Print string from memory
n printf(“*%s\n”, shared_memory);

¨ RULE: First attach, and then access

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.35

IPC Shared Memory:
What to do when you are done

① Detach from the address space.
§ shmdt() :SHared Memory DeTtach
§ shmdt(shared_memory)

② To remove a shared memory segment
§ shmctl() : SHared Memory ConTroL operation

n Specify the segment ID to be removed
n Specify operation to be performed: IPC_RMID

n Pointer to the shared memory region

35

COMPUTER SCIENCE DEPARTMENT

INTER PROCESS COMMUNICATIONS
MESSAGE PASSING

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.37

Communicate and synchronize actions without
sharing the same address space

¨ Two main operations
¤send(message)
¤receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤Variable: Little more effort

37

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.38

Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤Shared memory
¤Hardware bus
¤Network

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.39

Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering
¤ Automatic or explicit buffering

39

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.40

Communications: Naming allows processes to refer to
each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤Direct
¤ Indirect

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.41

Direct communications

¨ Explicitly name recipient or sender

¨ Link is established automatically
¤ Exactly one link between the 2 processes

¨ Addressing
¤Symmetric
¤Asymmetric

41

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.42

Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.43

Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process identifiers

43

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.44

Indirect communications: Message sent and received
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner
¤POSIX message queues use integers to identify mailboxes

¨ Processes communicate only if they have shared mailbox
¤send(A, message)
¤receive(A, message)

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.45

Indirect communications: Link properties

¨ Link established only if both processes share mailbox

¨ Link may be associated with more than two processes

45

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.46

Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤P1 sends a message to A
¤P2, P3 execute a receive() from A

¨ Possibilities? Allow …
① Link to be associated with at most 2 processes

② At most 1 process to execute receive() at a time

③ System to arbitrarily select who gets message

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.47

Mailbox ownership issues

¨ Owned by process

¨ Owned by the OS

47

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.48

Mailbox ownership issues:
Owned by process

¨ Mailbox is part of the process’s address space
¤Owner: Can only receive messages on mailbox
¤User: Can only send messages to mailbox

¨ When process terminates?
¤Mailbox disappears

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.49

Mailbox ownership issues:
Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤Not attached to any process

¨ OS must allow processes to
¤Create mailbox
¤Send and receive through the mailbox
¤Delete mailbox

49

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.50

Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.51

Message Passing: Buffering

¨ Messages exchanged by communicating processes reside in a
temporary queue

¨ Implementation schemes for queues
¤ZERO Capacity
¤Bounded
¤Unbounded

? When does a consumer wait?

? When does a producer wait?

51

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.52

Message Passing Buffer:
Consumer always has to wait for message

¨ ZERO capacity: No messages can reside in queue
¤Sender must block till recipient receives

¨ BOUNDED: At most n messages can reside in queue
¤Sender blocks only if queue is full

¨ UNBOUNDED: Queue length potentially infinite
¤Sender never blocks

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.53

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

53

