
SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Shrideep Pallickara
Computer Science

Colorado State University

1

L9.2INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Frequently asked questions from the previous class
survey

¨ What is “thread-safe”?
¨ Some confusion between start() and run() in Java threads
¨ Say, thread A performs a join() on a thread B

¤ Is thread A now running?
¤ Is thread B now running?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.3INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Synchronization: What we will look at

Synchronization

Race Conditions

Critical Sections

Critical Section problem
& solution requirements

Classical
Synchronization
problems

Hardware
assists

Why?

Synchronization
primitives

3

L9.4INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Topics covered in the lecture

¨ Critical section
¨ Critical section problem
¨ Peterson’s solution
¨ Hardware assists

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.5INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Reasoning about interleaved access to shared state:
Too much milk!

Roommate 1’s actions Roommate 2’s actions

3:00 Look in fridge; out of milk
3:05 Leave for store

3:10 Arrive at store Look in fridge; out of milk

3:15 Buy milk Leave for store

3:20 Arrive home; put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home; put milk away

Oh no!

5

L9.6COMPUTER SCIENCE DEPARTMENT

PROCESS SYNCHRONIZATION

Fairy tales are more than true: not because they tell us that dragons exist, but
because they tell us that dragons can be beaten.

G.K. Chesterton by way of Neil Gaiman, Coraline

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.7INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Process synchronization

¨ How can processes pass information to one another?

¨ Make sure two or more processes do not get in each other’s
way
¤ E.g., 2 processes in an airline reservation system, each trying to grab

the last seat for a different passenger

¨ Ensure proper sequencing when dependencies are present

7

L9.8INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Applicability to threads

¨ Passing information between threads is easy
¤ They share the same address space of the parent process

¨ Other two aspects of process synchronization are applicable to
threads
¤Keeping out of each other’s hair
¤Proper sequencing

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.9INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

A look at the producer consumer problem

while (true) {
 while (counter == BUFFER_SIZE) {
 ; /*do nothing */
 }
 buffer[in] = nextProduced
 in = (in +1)%BUFFER_SIZE;
 counter++;
}

while (true) {
 while (counter == 0) {
 ; /*do nothing */
 }
 nextConsumed = buffer[out]
 out = (out +1)% BUFFER_SIZE;
 counter--;
}

Producer

Consumer

? Operators?

9

L9.10INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Implementation of ++/-- in machine language

counter++
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter--
 register2 = counter
 register2 = register2 - 1
 counter = register2

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.11INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: register1 = register1 + 1

Producer execute: counter = register1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

? Correctness?

11

L9.12INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

The order of statements within each high-level statement is preserved

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.13INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter {register1 = 5}

Producer execute: register1 = register1 + 1 {register1 = 6}

Consumer execute: register2 = counter {register2 = 5}

Consumer execute: register2 = register2 - 1 {register2 = 4}

Producer execute: counter = register1 {counter = 6}

Consumer execute: counter = register2 {counter = 4}

Counter has incorrect state of 4

13

L9.14INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 6}

{counter = 4}

Counter has incorrect state of 6

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.15COMPUTER SCIENCE DEPARTMENT

RACE CONDITIONS

Life doesn't give you all the practice races you
need.

Jesse Owens

15

L9.16INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition

¨ Several processes access and manipulate data concurrently

¨ Outcome of execution depends on
¤Particular order in which accesses takes place

¨ Debugging programs with race conditions?
¤Painful!
¤Program runs fine most of the time, but once in a rare while something

weird and unexpected happens

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.17INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [1/3]

¨ When process wants to print file, adds file to a special spooler
directory

¨ Printer daemon periodically checks to see if there are files to be
printed
¤ If there are, print them

¨ In our example, spooler directory has a large number of slots

¨ Two variables
¤ in: Next free slot in directory
¤ out: Next file to be printed

17

L9.18INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [2/3]

¨ In jurisdictions where Murphy’s Law hold …

¨ Process A reads in, and stores the value 7, in local variable
next_free_slot

¨ Context switch occurs
¨ Process B also reads in, and stores the value 7, in local variable
next_free_slot

¤ Stores name of the file in slot 7

¨ Process A context switches again, and stores the name of the file it
wants to print in slot 7

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.19INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [3/3]

¨ Spooler directory is internally consistent

¨ But process B will never receive any output
¤User B loiters around printer room for years, wistfully hoping for an

output that will never come ...

19

L9.20INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The kernel is subject to several possible race
conditions

¨ E.g.: Kernel maintains list of all open files
¤2 processes open files simultaneously
¤Separate updates to kernel list may result in a race condition

¨ Other kernel data structures
¤Memory allocation
¤Process lists
¤ Interrupt handling

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.21COMPUTER SCIENCE DEPARTMENT

CRITICAL SECTION

Segment of code where processes change common variables

21

L9.22INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Critical Section

¨ Concurrent accesses to shared resources can lead to unexpected
or erroneous behavior

¨ Parts of the program where the shared resource is accessed thus
need to be protected
¤ This protected section is the critical section

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.23INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Critical-Section

¨ System of n processes {P0, P1, …, Pn-1}

¨ Each process has a segment of code (critical section) where it:
¤Changes common variables, updates a table, etc

¨ No two processes can execute in their critical sections at the
same time

23

L9.24INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Critical-Section problem

¨ Design a protocol that processes can use to cooperate

¨ Each process must request permission to enter its critical section
¤ The entry section

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.25INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

General structure of a participating process

do {

 critical section

 remainder section

} while (TRUE);

entry section

exit section

Request permission
to enter

Housekeeping to let
other processes enter

25

L9.26COMPUTER SCIENCE DEPARTMENT

REQUIREMENTS FOR A SOLUTION TO THE
CRITICAL SECTION PROBLEM

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.27INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Requirements for a solution to the critical section
problem

① Mutual exclusion

② Progress

③ Bounded wait

¨ PROCESS SPEED
¤ Each process operates at non-zero speed
¤Make no assumption about the relative speed of the n processes

27

L9.28INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Mutual Exclusion

¨ Only one process can execute in its critical section

¨ When a process executes in its critical section
¤No other process is allowed to execute in its critical section

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.29INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Mutual Exclusion: Depiction

Process A

Process B

A enters
critical section

T1 T2 T3 T4

B attempts
to enter
critical section

B enters
critical section

B blocked

A exits
critical section

B exits
critical section

29

L9.30INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Progress

¨ {C1} If No process is executing in its critical section, and …

¨ {C2} Some processes wish to enter their critical sections

¨ Decision on who gets to enter the critical section
¤ Is made by processes that are NOT executing in their remainder section

¤ Selection cannot be postponed indefinitely

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.31INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Bounded waiting

¨ After a process has made a request to enter its critical section
¤AND before this request is granted

¨ Limit number of times other processes are allowed to enter
their critical sections

31

L9.32INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Approaches to handling critical sections in the OS

¨ Nonpreemptive kernel
¤ If a process runs in kernel mode: no preemption
¤Free from race conditions on kernel data structures

¨ Preemptive kernels
¤Must ensure shared kernel data is free from race conditions
¤Difficult on SMP (Symmetric Multi Processor) architectures

n 2 processes may run simultaneously on different processors

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.33INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Kernels: Why preempt?

¨ Suitable for real-time
¤A real-time process may preempt a kernel process

¨ More responsive
¤ Less risk that kernel mode process will run arbitrarily long

33

L9.34COMPUTER SCIENCE DEPARTMENT
Software based solution

PETERSON’S SOLUTION

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.35INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution

¨ Software solution to the critical section problem
¤Restricted to two processes

¨ No guarantees on modern architectures
¤Machine language instructions such as load and store implemented

differently

¨ Good algorithmic description
¤Shows how to address the 3 requirements

35

L9.36INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution: The components

¨ Restricted to two processes
§ Pi and Pj where j = 1-i

¨ Share two data items
§ int turn

n Indicates whose turn it is to enter the critical section

§ boolean flag[2]

n Whether process is ready to enter the critical section

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.37INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s solution: Structure of process Pi

do {

 critical section

 remainder section

} while (TRUE);

flag[i] = TRUE;
turn = j;
while (flag[j] && turn==j) {;}

flag[i] = FALSE;

37

L9.38INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s solution: Mutual exclusion

¨ Pi enters critical section only if
 flag[j] == false OR turn == i

¨ If both processes execute in critical section at the same time
§ flag[0] == flag[1] == true
§ But turn can be 0 or 1, not BOTH

¨ If Pj entered critical section
§ flag[j] == true AND turn == j
§ Will persist as long as Pj is in the critical section

while (flag[j] && turn==j) {;}

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.39INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution:
Progress and Bounded wait
¨ Pi can be stuck only if flag[j]==true AND turn==j

¤ If Pj is not ready: flag[j] == false, and Pi can enter
¤ Once Pj exits: it resets flag[j] to false

¨ If Pj resets flag[j] to true
¤ Must set turn = i;

¨ Pi will enter critical section (progress) after at most one entry by Pj
(bounded wait)

39

L9.40COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZATION
HARDWARE

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.41INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

41

L9.42INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Solving the critical section problem using locks

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.43INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Possible assists for solving critical section problem [1/2]

¨ Uniprocessor environment
¤Prevent interrupts from occurring when shared variable is being

modified
n No unexpected modifications!

¨ Multiprocessor environment
¤Disabling interrupts is time consuming

n Message passed to ALL processors

43

L9.44INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Possible assists for solving critical section problem [2/2]

¨ Special atomic hardware instructions
¤Swap content of two words
¤Modify word

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.45INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Swap()

void Swap(boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp;
}

45

L9.46INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Swap: Shared variable LOCK is initialized to false

do {

 critical section

 remainder section

} while (TRUE);

key = TRUE;
while (key == TRUE) {
 Swap(&lock, &key)
}

lock = FALSE;

lock is a SHARED variable
key is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.47INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

47

L9.48INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.49INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region:
 TSL REGISTER, LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

enter_region:
 MOVE REGISTER, #1
 XCHNG REGISTER,LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

49

L9.50INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The contents of this slide set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 5]

¨ https://en.wikipedia.org/wiki/Critical_section

50

