
CS 370: Operating Systems Fall 25 Colorado State University

 HW2: Programming Assignment

 Working With Parent and Child Processes v.9.18.25 9:34 AM

Write a program that reads strings from a file, creates three child processes to do the required

computations and obtains status information from them. It uses fork(), exec(), wait() and

WEXITSTATUS(status) system calls.

Due Date: Oct 2, 2025

Extended Due Date with 10% per day penalty until Oct 2, 2025.

1. Description of assignment

Write a C program called Generator.c that reads numbers from a file, whose name will be provided
as a command line argument. Generator forks three child processes for each line, which will run programs:
OddEven, PerfectSquare, and Factorial.

You will create four programs:
Generator.c

OddEven.c

PerfectSquare.c

Factorial.c

Generator.c takes one mandatory argument which is the name of the .txt file. Generator.c will

read all the lines from the given .txt file and send each line value to the first child process and then the

other child processes will use the result obtained from the previous child Process as their input argument.

a. The Generator is responsible for executing the fork() functions to create the child processes.

b. Each created child Process runs the exec() function to run the program needed (OddEven,

PerfectSquare, Factorial).The Generator should provide the required argument for the first child

process to complete its execution. The second child process should use the result returned by the first

child process as an argument and the third child process will use the result obtained from the second

child process as input.

c. The wait() function is used to wait for the child processes to complete its execution. The Macros

WIFEXITED(status) and WEXITSTATUS(status) are used to obtain the result(as an eight-bit integer)

from the three child processes.

The Generator saves the status(result) obtained from each child process. After the completion of the

execution of all the processes the Generator will print the outputs from each child processes executed.

Generator.c takes one mandatory argument which is the name of the .txt file. Generator.c will

read all the lines from the given .txt file and send each line value to the first child process, and then the

other child processes will use the result obtained from the previous child process as their input argument.

a. The Generator is responsible for executing the fork() functions to create the child processes.

CS 370: Operating Systems Fall 25 Colorado State University

b. Each created child process runs the exec() function to run the program needed (OddEven,

PerfectSquare, or Factorial). The Generator should provide the required argument for

the first child process to complete its execution. The second child process should use the result returned

by the first child process as an argument, and the third child process will use the result obtained from the

second child process as input.

c. The wait() function is used to wait for the child processes to complete their execution. The macros

WIFEXITED(status) and WEXITSTATUS(status) are used to obtain the result (as an eight-bit integer) from

the three child processes.

The Generator saves the status (result) obtained from each child process. After the completion of the

execution of all the processes, the Generator will print the outputs from each child process executed.

OddEven.c, PerfectSquare.c, Factorial.c:

Each of these programs receives one line as an argument. The programs are used to perform the

respective computation using the argument provided and return a result.

OddEven.c: Prints whether the number is odd or even, then returns the number itself.

PerfectSquare.c: Prints whether the number is a perfect square, then returns the number itself.

Factorial.c: Prints the factorial of the number, and returns the factorial value if it is ≤ 255; otherwise

returns n % 255.

Note: All Print statements must indicate the program that is responsible for generating them. To do this,

please prefix your print statements with the program name.

Generator.c should indicate the process ID of the child process it created, and the child processes

(OddEven, PerfectSquare, Factorial) should indicate their own process IDs. The example

output that is shown below depicts the expected format of the output and must be strictly adhered to.

Hint: A good starting point is to implement the functionality for the OddEven.c, PerfectSquare.c,

and Factorial.c programs, and then write the code to manage their execution using the Generator

program.

2. Input and Output

For example, the “input.txt” file could contain the strings “5” and “8” on two separate lines which would
mean to run all three child processes with the first input to OddEven.c being 5 and then 8.
Use fopen() function to read the string from the file.

Notes:

● You can assume that the input numbers to be between 1(inclusive) and 20 (inclusive).
● Note that the end of a line is indicated differently in text files for Windows and Linux system.

So please test your program in a linux environment e.g. on the CS Machines.

CS 370: Operating Systems Fall 25 Colorado State University

3. Task Requirements

1. The Generator must read the numbers from the .txt file, the name of which will be passed as

an argument to it. Then send each number, one at a time, to the first child process. The first child
process must accept the number as an argument.

2. The Generator should spawn up to 3 processes using the fork() function for each line from the
input file and must ensure that one full cycle of fork(), exec() and wait() is completed for a given
process before it moves on to spawning a new process.

3. Once it has used the fork() function, the Generator will print out the process ID of the process that
it created. This can be retrieved by checking the return value of the fork() function.

4. Child-specific processing immediately follows. The exec() function loads the OddEven /

PerfectSquare / Factorial program into the newly created process. This exec() function
should also pass the value to the OddEven / PerfectSquare / Factorial program.
For this assignment, it is recommended that you use the execlp() function. The “man” page for
exec gives details on the usage of the exec() family of functions.

5. When the OddEven / PerfectSquare / Factorial program is executing, it prints out
its process ID; this should match the one returned by the fork() function in step 3.

6. The OddEven / PerfectSquare / Factorial program then prints the respective outputs
and returns a result as follows:
a. OddEven.c should print whether the number is odd or even, and return the number itself.

 b. PerfectSquare.c should print whether the number is a perfect square, and return the
number itself.
c. Factorial.c should print the factorial of the number. If the factorial ≤ 255, return the
factorial value. Otherwise, return n % 255 (% is modulo operation, i.e. remainder after an integer
division).

7. Each program should return its result after executing. Each result is received and stored by the
Generator. The stored value is used as the argument for the next child process that is forked.
You can use the WEXITSTATUS() macro to determine the exit status code (see man 2 wait).
Note: Please be careful of the data types of the input arguments and the returned results from
each child process.

8. Parent-specific processing in the Generator should ensure that the Generator will wait() for each
instance of the child-specific processing to complete. Once all the processes are complete, output
the values returned as mentioned in 6.a, 6.b, 6.c to the terminal.

IMPORTANT: Your program must fork(), exec(), wait() the programs in this order for each input
provided:
OddEven → PerfectSquare → Factorial

Notes:
a. When you are making makefile, make sure “make all” or “make” command is not creating

any zip file. You can use “make zip” or any other command to make zip file.

b. Check the numbers in the input file and make sure those are between 1 and 20.

CS 370: Operating Systems Fall 25 Colorado State University

4. Example Outputs

This is the output when analyzing the file input.txt which contains the strings on two separate lines:

5

8

(Note: your process IDs will most likely be different)

===

Generator Process: Processing line "5"

===

Waiting for the Child Process: (PID: 254516)

OddEven: 5 is Odd

./OddEven Process finished (PID: 254516). Returned: 5

Waiting for the Child Process: (PID: 254517)

PerfectSquare: 5 is Not a Perfect Square

./PerfectSquare Process finished (PID: 254517). Returned: 5

Waiting for the Child Process: (PID: 254518)

Factorial: 5! = 120

./Factorial Process finished (PID: 254518). Returned: 120

===

Generator Process: Processing line "8"

===

Waiting for the Child Process: (PID: 254519)

OddEven: 8 is Even

./OddEven Process finished (PID: 254519). Returned: 8

Waiting for the Child Process: (PID: 254520)

PerfectSquare: 8 is Not a Perfect Square

./PerfectSquare Process finished (PID: 254520). Returned: 8

Waiting for the Child Process: (PID: 254521)

Factorial: 8! = 40320

./Factorial Process finished (PID: 254521). Returned: 30

Notice for Factorial:

For 5, factorial is 120 → small enough to return as exit status.

For 8, factorial is 40320, which is too large for exit status (8-bit only), so the rule applies: it returns n % 255

(here, 8).

CS 370: Operating Systems Fall 25 Colorado State University

5. What to Submit

Use the CS370 Canvas to submit a single .zip or .tar file that contains:

• All .c and .h files listed below, with descriptive comments within:
o Generator.c

o OddEven.c

o PerfectSquare.c

o Factorial.c

• A Makefile that performs both a make build as well as a make clean. Note that you will have four

executables.

For this and all subsequent assignments, you need to ensure that you have submitted a valid .zip/.tar file.

After submitting your file, you can download it and examine it to make sure it is indeed a valid archive file,

by trying to extract it.

Filename Convention: The archive file must be named as:

<FirstName>-<LastName>-HW2.<zip>

Example: if you are John Doe and submitting for assignment 2, then the zip file should be named:

John-Doe-HW2.zip

6. Grading

The assignments must compile and function correctly on machines in the CSB-120 Lab. Assignments that

work on your laptop on your flavor of Linux/Mac OS X/Windows, but not on the Lab machines, are
considered unacceptable.
The grading will be done on a 100-point scale. The points are broken up as follows:

Objective Points

Proper submission with required files, compilation and program running 10

Expected program structure with parent/child processes 30

Correct reading of input file 15

Correct OddEven, PerfectSquare, Factorial implementation 45

CS 370: Operating Systems Fall 25 Colorado State University

7. Late Policy

Click here for the class policy on submitting late assignments.

Notes:

1. You are required to work alone on this assignment.
2. Late Policy: There is a late penalty of 10%/day for a maximum of two days.
3. Note that although WEXITSTATUS(status) is primarily intended for returning the status to the

parent, here we are exploiting this capability to transmit the result from the child programs to the
parent program.

Revisions: Any revisions in the assignment will be noted below.

https://www.cs.colostate.edu/~cs370/Fall25/syllabus.html

