CS 370: Operating Systems Fall 25 Colorado State University

Homework 3: Programming Assignment

WORKING WITH SHARED MEMORY AND PIPES FOR INTER PROCESS COMMUNICATION v. 10.02.25 11:30PM

The objective of this assignment is to get comfortable with Inter Process Communication (IPC) using
Shared Memory and Pipes. These approaches are among two of the most dominant mechanisms
for doing IPC. Familiarity with shared memory will also help you with some of the advanced concepts
that we will cover in process synchronization.

Due DATE: Oct 16,2025 11 PM
Extended Due Date with 10% per day penalty until Oct 18, 2025 11 PM

1 Description of Task

This assignment builds on the concepts of HW2. In this assignment, however, you will be tasked with
creating processes that execute in parallel using both shared memory and pipes. To do so, you will
create two files:

1. Manager.c
2. Palindrome.c

The Manager (the parent) coordinates the tasks performed by Palindrome (the children). You will
be asked to take n words from the command line and distribute the words to the children where
they will each perform the same task with their own word. The words provided at the command line
will be all lowercase for simplicity. In each child (Palindrome), you will determine if the word received
is a valid palindrome and write the result to the Manager.

The Manager behaves similarly to Generator in the previous assignment, but has the following
new capabilities:

1. Creation of unique shared memory segments for the Manager to share an individual word with
each Palindrome instance and for each Palindrome instance to store results in.

2. Creation of a pipe for each Palindrome instance that provides it with the nhame of the shared
memory segment created in step (1). The file descriptor (FD) of the pipe is passed as an
additional argument to Palindrome.

3. Palindrome processes run concurrently rather than sequentially. This means that the
Manager will launch all the child processes and then start waiting for results.

As in the previous assignment, each instance of the Palindrome will receive different arguments.
As discussed above; to facilitate this, the Manager will take n command line arguments (the
words to be validated). For instance,

> ./Manager racecar kayak apple abcba hello
Would create 5 child processes that would check each word in parallel.

Palindrome requirements are below:
1. It will take a command line argument that gives the FD of the pipe to read from.
2. Using the pipe FD, the Palindrome instance determines the name of the shared memory
segment to read its given word from and store its resulit.
3. Rather than returning the result of the check, the result is stored in the shared memory
segment.
Page 1 of 5

CS 370: Operating Systems Fall 25 Colorado State University

2 Overview of assignment requirements:

Vi.

Vii.

viii.

To simplify access and avoid the need to do manual offset calculations we recommend
using the struct provided below:

typedef struct {

int result;

char word[4092];
} shared_mem_t;

a. The Manager writes the input word into word and initializes result = -1. The child
reads word, validates, and writes result. This struct will be the basis of your
shared memory segment.

Palindrome must accept one command line argument, and the Manager must accept n
command line arguments.

The Manager creates a pipe using the pipe() command for each child process. The read
end of the pipe will be passed to the Palindrome process, and the write end of the pipe
will be used by the Manager to provide the shared memory segment name.

The Manager should spawn n processes using the fork() command and print their
process IDs as they are created.

Child-specific processing immediately following the fork() command loads the
Palindrome program into the newly created process using the exec() command. This
ensures that the forked process is no longer a copy of the Manager. This exec()
command should also pass 1 argument to the Palindrome program: the FD of the read
end of the pipe created in (iii).

The Manager sets up the shared memory using shm_open() and ftruncate() and
writes its name to the pipe.

a. Attach and initialize the struct (set result = -1, copy the word into the word
field), then detach.

The Palindrome process starts executing, prints out its process ID, and retrieves the
shared memory segment name from the pipe.

a. It then retrieves the word from the shared memory segment and check if it is a
valid palindrome and prints the information.

b. If the word is a palindrome, it should write 1 (palindrome) or 0 (not palindrome)
to the result field of the struct in shared memory.

Parent-specific processing in the Manager should ensure that the Manager will wait()
for each instance of the child-specific processing to complete. This is done AFTER all the
processes have been started. The results retrieved from shared memory should be
printed and match up with what was printed in (vii).

Both the Manager and Palindrome should clean up: FDs should be closed and shared
memory unlinked (use the shm_unlink() command).

Ensure the Manager handles malloc / pipe / fork / exec / shm_open /
ftruncate / mmap / munmap / shm_unlink failures with clear error messages

and cleanup

Page 2 of 5

CS 370: Operating Systems Fall 25 Colorado State University

3. Example Output:
This has been color-coded to highlight the three main sections. Do not worry about color-coding your output.

> ./Manager racecar kayak apple abcba hello
Manager: forked process with ID 66407.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66408.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 664009.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66410.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66411.
Manager: wrote shm name to pipe (18 bytes)
Manager: waiting on child process ID 66407...

Palindrome process [66407 starting.

Palindrome process [66407 read word "racecar" from shared memory
Palindrome process [66407 racecar *IS* a palindrome

Palindrome process [66407 wrote result (1) to shared memory.
Palindrome process [66408 starting.

[]:
[]
[]
[]
[]:
Palindrome process [66408]: read word "kayak" from shared memory
[1:
[]
[]
[]
[]

Palindrome process [66408 kayak *IS* a palindrome

Palindrome process [66408 wrote result (1) to shared memory.
Palindrome process [66409 starting.

Palindrome process [66409 read word "apple" from shared memory
Palindrome process [66409 apple *IS NOT* a palindrome

Palindrome process [66409]: wrote result (0) to shared memory.

Manager: result 1 read from shared memory. "racecar" is a palindrome.
Manager: waiting on child process ID 66408...

Manager: result 1 read from shared memory. "kayak" is a palindrome.
Manager: waiting on child process ID 66409...

Manager: result 0 read from shared memory. "apple" is not a palindrome.
Manager: waiting on child process ID 66410.

Palindrome process [66410 starting.
Palindrome process [66410 read word "abcba" from shared memory
Palindrome process [66410 abcba *IS* a palindrome

[1:
[]
[1:
Palindrome process [66410]: wrote result (1) to shared memory.
[]
[]
[]

Palindrome process [66411 starting.
Palindrome process [66411 read word "hello" from shared memory
Palindrome process [66411 hello *IS NOT* a palindrome

Palindrome process [66411]: wrote result (0) to shared memory.

Manager: result 1 read from shared memory. "abcba" is a palindrome.
Manager: waiting on child process ID 66411...

Manager: result 0 read from shared memory. "hello" is not a palindrome.
Manager: exiting.

Things to keep in mind for each section:

1. RED: For a problem this size, the OS should be able to assign sequential PIDs. This section does
happen sequentially as the parent takes each word from the command line and forks the children, so
this sequential output makes sense. You should see the parent wait on the first PID it forked as the
last statement of this section.

2. BLUE: This is where you will see the effects of parallelism, each time you run your program this
section will be interleaved in a different order, so it is okay if your output does not match exactly.

3. GREEN: This is the end so this should always print last.

Page 3 of 5

CS 370: Operating Systems Fall 25 Colorado State University

As with the last assighment, the syntax of each line should match what you see in the example
output as we will use regex to assert correctness. Additionally, you will notice the PIDs and
shared memory names will change each time you run your program, and this is expected behavior.

Here is the same output with the sections marked by text in case the colors are hard to read (the
added lines are not actually apart of the expected output):

> ./Manager racecar kayak apple abcba hello
BEGIN RED SECTION

Manager: forked process with ID 66407.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66408.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66409.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66410.
Manager: wrote shm name to pipe (18 bytes)
Manager: forked process with ID 66411.
Manager: wrote shm name to pipe (18 bytes)
Manager: waiting on child process ID 66407...
END RED SECTION

BEGIN BLUE SECTION

Palindrome process [66407 starting.

Palindrome process [66407 read word "racecar" from shared memory
Palindrome process [66407 racecar *IS* a palindrome

Palindrome process [66407 wrote result (1) to shared memory.
Palindrome process [66408 starting.

[]
[]
[]
[]
[1:
Palindrome process [66408]: read word "kayak" from shared memory
[1:
[]
[]
[]
[]

Palindrome process [66408 kayak *IS* a palindrome

Palindrome process [66408 wrote result (1) to shared memory.
Palindrome process [66409 starting.

Palindrome process [66409 read word "apple" from shared memory
Palindrome process [66409 apple *IS NOT* a palindrome

Palindrome process [66409]: wrote result (0) to shared memory.

Manager: result 1 read from shared memory. "racecar" is a palindrome.
Manager: waiting on child process ID 66408...

Manager: result 1 read from shared memory. "kayak" is a palindrome.
Manager: waiting on child process ID 66409...

Manager: result 0 read from shared memory. "apple" is not a palindrome.
Manager: waiting on child process ID 66410...

Palindrome process [66410 starting.
Palindrome process [66410 read word "abcba" from shared memory
Palindrome process [66410 abcba *IS* a palindrome

[]
[]
[I:
Palindrome process [66410]: wrote result (1) to shared memory.
[]
[]
[]

Palindrome process [66411 starting.
Palindrome process [66411 read word "hello" from shared memory
Palindrome process [66411 hello *IS NOT* a palindrome

Palindrome process [66411]: wrote result (0) to shared memory.

Manager: result 1 read from shared memory. "abcba" is a palindrome.
Manager: waiting on child process ID 66411...

Manager: result 0 read from shared memory. "hello" is not a palindrome.
END BLUE SECTION¥

BEGIN GREEN SECTION

Manager: exiting.

END GREEN SECTION¥

Page 4 of 5

CS 370: Operating Systems Fall 25 Colorado State University

3 What to Submit

Assignments should be submitted through Canvas. E-mailing the codes to the Professor, GTA, or the class
accounts will result in an automatic 1 point deduction.

Use the CS370 Canvas to submit a single .zip file that contains:
e Manager.c and Palindrome.c (please document your code)

e A Makefile that performs both a make clean as well as a make all (this will be provided in
Teams)

Filename Convention: Your manager and palindrome must be named Manager.c and Palindrome.c
respectively; you can name additional .c and .h files anything you want. The archive file should be
named as <LastName>-<FirstName>-HW3.zip. E.g. if you are Cameron Doe and submitting for
HW3, then the zip file should be hamed Doe-Cameron-HW3.zip.

4 Grading

The assignments must compile and function correctly on machines in the CSB-120 Lab. Assignments that work
on your laptop on your particular flavor of Linux/Mac OS X, but not on the Lab machines are considered
unacceptable. Solutions that do not compile when the make command is executed will receive a grade of zero.

Objective Points
Working Makefile 10
Correct output syntax / Correctly validated inputs 90

You are required to work alone on this assignment.

Notes:
1. This program may not work on your Mac OS X or other systems. Try to run the program on a lab system,
especially if you keep getting a segmentation fault when the code seems correct.
a. Your solution will be tested on the lab machines.

2. Please remember to unlink the shared memory. Failing to do that may cause problems for other users
of the machine.

3. Beware the dangers of race conditions and deadlocks!
a. Design your programs carefully.
b. Test your programs for correctness individually before multi-threaded debugging.

5 Late Policy

Click here for the class policy on submitting late assignments.

Revisions: Any revisions in the assignment will be noted below

Page 5 of 5

https://www.cs.colostate.edu/~cs370/Fall25/syllabus.html

	1 Description of Task
	2 Overview of assignment requirements:
	i. To simplify access and avoid the need to do manual offset calculations we recommend using the struct provided below: typedef struct { int result; char word[4092]; } shared_mem_t;
	a. The Manager writes the input word into word and initializes result = -1. The child reads word, validates, and writes result. This struct will be the basis of your shared memory segment.
	ii. Palindrome must accept one command line argument, and the Manager must accept n command line arguments.
	iii. The Manager creates a pipe using the pipe() command for each child process. The read end of the pipe will be passed to the Palindrome process, and the write end of the pipe will be used by the Manager to provide the shared memory segment name.
	iv. The Manager should spawn n processes using the fork() command and print their process IDs as they are created.
	v. Child-specific processing immediately following the fork() command loads the Palindrome program into the newly created process using the exec() command. This ensures that the forked process is no longer a copy of the Manager. This exec() command sh...
	vi. The Manager sets up the shared memory using shm_open() and ftruncate() and writes its name to the pipe.
	a. Attach and initialize the struct (set result = -1, copy the word into the word field), then detach.
	vii. The Palindrome process starts executing, prints out its process ID, and retrieves the shared memory segment name from the pipe.
	a. It then retrieves the word from the shared memory segment and check if it is a valid palindrome and prints the information.
	b. If the word is a palindrome, it should write 1 (palindrome) or 0 (not palindrome) to the result field of the struct in shared memory.
	viii. Parent-specific processing in the Manager should ensure that the Manager will wait() for each instance of the child-specific processing to complete. This is done AFTER all the processes have been started. The results retrieved from shared memory...
	ix. Both the Manager and Palindrome should clean up: FDs should be closed and shared memory unlinked (use the shm_unlink() command).
	x. Ensure the Manager handles malloc / pipe / fork / exec / shm_open / ftruncate / mmap / munmap / shm_unlink failures with clear error messages and cleanup
	3. Example Output: This has been color-coded to highlight the three main sections. Do not worry about color-coding your output.
	3 What to Submit
	4 Grading
	5 Late Policy

