CS370 Fall 2025
HW4: Programming Assignment v.10/27/2025 10:42 AM

CPU Scheduling Algorithms

In this assignment, you will implement First Come First Serve, Shortest Job First with
preemption, and Round Robin to generate a Gantt chart to evaluate measures of effectiveness.

Due Date: Thursday, October 30, 2025, 11:00 pm
Late penalty: 10% per day until Saturday, Nov 1, 2025, 11:00 pm

This document is available at Canvas (Assignments > HW4)

1. Task Description
You will be developing the three CPU scheduling methods listed below in this project. The first
command line argument indicates the name of the file containing the list of processes to be used
by your scheduling methods. The next command line argument specifies the time quantum (for
Round Robin). You will use Python 3 for the programming language to implement these three
scheduling techniques shown below (you are free to use Pandas and NumPy libraries if needed).
Assume that all jobs are CPU bound (no I/O blocking) and that the context-switching time is
minimal. Assume that in Round Robin, if a new process arrives at the same time as a process is
switched out, the new process is placed first in the ready queue.

e First Come First Serve (FCFS)

e Shortest Job First with pre-emption (SJF-P)

e Round Robin (RR) with the specified quantum.

You must produce a Gantt chart for each scheduling algorithm to visualize the sequence of
execution for each process (See the example output below). You will analyze the performance of
these scheduling algorithms by tracking the turnaround time and wait time for each process by
printing: the average waiting time, the average turnaround time, and the throughput after all
processes have completed.

e The turnaround time for a process is the difference between a job's submission and
completion times. The average turnaround time reports the average for the set of processes
that were scheduled.

e The waiting time for a process reflects the total amount of time spent by that process in the
ready queue. The average waiting time reports the average for the set of processes that were
scheduled.

e The throughput for a scheduling algorithm measures the total number of tasks processes
per unit time.

https://canvas.colostate.edu/
https://canvas.colostate.edu/

2. Task Requirements

1. Your program must be able to take two command-line parameters. The first argument
specifies the name of the process file (for example: processinfo.csv). This file is comma-
separated and has four columns (process ID, arrival time, burst time, priority), with each
row representing a single process. This file is expected to contain a maximum of 15
processes. The second argument is the time quantum for Round Robin scheduling. Please
note that the file that we pass can be named anything. DO NOT JUST LOOK FOR A FILE
CALLED "PROCESSINFO.CSV"

2. Given a set of processes, arrival time, burst time, and priority for each process, your
application (scheduler.py) should be able to do FCFS, Shortest Job First with Preemption,
and Round Robin scheduling appropriately.

3. Use the following format to implement FCFS and print a Gantt chart depicting the
execution process (align the number in the columns). Report each process's waiting time
and turnaround time. Report the average waiting time and turnaround time, as well as the
overall throughput for all procedures.

4. Repeat item 3 above for Shortest Job First with pre-emption (if a process with shorter
remaining burst time arrives, it pre-empts the process with longer remaining time currently
running).

5. Repeat item 3 above for RR using the specified quantum.

Note: The processes in the file (first command line argument file) may be specified in such a way
that it may result in some IDLE time when there are no processes ready to be executed. During the
IDLE time the CPU has no processes to execute and waits for the next process to appear in the
ready queue. Your Gantt chart should include these IDLE times. Also, the first process need not
start at time 0. At time 0, there can be IDLE time in the Gantt chart till the first process arrives
later on in time.

**% Assume that when two new processes arrive at the same time, the process with the shorter
burst time enters the Ready Queue first. If burst times are equal, the process with lower process ID
goes first. Your program must explicitly handle this ordering rule when retrieving new arrivals at
each simulation time step. To ensure this, implement a helper method (for example,
get arrivals(time)) that performs the following actions:

1. Filters the list of processes to select those whose arrival time equals the current simulation time.
2. Sorts these processes by burst time (shorter burst time first).

3. If two or more processes have the same burst time, break ties by process ID (lower process ID
first).

The sorted list returned from this helper should then be added to the ready queue in that order. This
ensures consistent queue behavior for cases in which multiple processes arrive simultaneously.
Example Outputs:

Input File: processinfo.csv contains the following comma-separated values:

ProcessID,Arrival Time,Burst Time
3,0,6

2,0,5

1,12,8

4,13,6

Note: The first line in the processinfo.csv file has headers Process ID, Arrival Time, Burst Time,
Priority.
<system_name>:<folder path>$ python3 scheduler.py processinfo.csv 3

FCFS
ProcessID 1234
Waiting Time 00 5 7
Turnaround Time 8 5 11 13

FCFS Gantt Chart
[0]--2--[5]
[5]--3--[11]
[11]--IDLE--[12]
[12]--1--[20]
[20]--4--[26]

Average Waiting Time: 3.0
Average Turnaround Time: 9.25
Throughput: 0.15384615384615385

___Shortest Job First with Preemption
ProcessID 1234

Waiting Time 6 0 5 0

Turnaround Time 14 511 6

Shortest Job First with Preemption Gantt Chart
[0]--2--[5]

[5]--3--[11]

[11]--IDLE--[12]

[12]--1--[13]

[13]--4--[19]

[19]--1--[26]

Average Waiting Time: 2.75
Average Turnaround Time: 9.0
Throughput: 0.15384615384615385

Round Robin
ProcessID 1234
Waiting Time 6 35 5
Turnaround Time 14 8 11 11

Round Robin Gantt Chart
[0]--2--[3]

[3]--3--[6]

[6]--2--[8]

[8]--3--[11]
[11]--IDLE--[12]

[12
[15

—
p—
o0

]
I--
I
I--
I--
I

Average Waiting Time: 4.75
Average Turnaround Time: 11.00
Throughput: 0.15384615384615385

5. What to Submit
Use the CS370 Canvas to submit a single .zip or .tar file that contains:

All .py files with descriptive comments within,

a README.txt file containing a description of each file and any information you feel the
grader needs to grade your program.

Please do not include processinfo.csv with your submission.

Create a zip with the source code files only. Don't put the files under a directory.

Try to maintain the output strings as exactly as the output format given in Section 4, since
our Autograder testing script is case-sensitive.

For this and all other assignments, ensure that you have submitted a valid .zip/.tar file. After
submitting your file, you can download it and examine to make sure it is indeed a valid zip/tar
file, by trying to extract it.

Filename Convention: The archive file must be called: <FirstName>-<LastName>-HW4.<zip>.
E.g. if you are John Doe and submitting for assignment 4, then the zip file should be named John-
Doe-HW4.zip.

In the example above, processinfo.csv is the name of the file containing the information about all

the processes; your program should work with any name (not just processinfo).

6. Grading

The assignments must compile and function correctly on machines in the CSB-120 Lab.
Assignments that work on your laptop on your particular flavour of Linux/Mac OS X but not on
the Lab machines are considered unacceptable.

The grading will be done on a 100-point scale. The points are broken up as follows:

Objective

Points

FCFS - Gantt Chart, Throughput, Waiting time and Average Waiting time, 40 points
Turnaround Time and Average Turnaround time

Shortest Job First with Preemption - Gantt Chart, Throughput, Waiting time| 30 points
and Average Waiting time, Turnaround Time and Average Turnaround time

Round Robin - Gantt Chart, Throughput, Waiting time and Average Waiting 25 points
time, Turnaround Time and Average Turnaround time

Compilation with no warnings or errors 2 points
Suitable documentation of code in code files and README 3 points
You are required to [work alone] on this assignment.
7. Late Policy
Click here for the class policy on submitting late assignments.
Revisions: Any revisions/clarifications in the assignment will be noted below.
No Changes Revision
Initial draft v.10/12/2025 11:58PM
2 e Removed Priority from processinfo.csv v.10/17/2025 09:40AM
e Scheduler’s output format has been modified
3 e Example Output format and values corrected and updated v.10/20/2025 11:54 AM

Clearly explained the situation when two new processes
arrive at the same time.

Round-Robin output example corrected

v.10/22/2025 10:12 AM

5 Round-Robin Gantt-Chart example corrected

v.10/27/2025 10:42 AM

https://www.cs.colostate.edu/~cs370/Fall25/syllabus.html

