CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 19

Virtual Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Demand Paging

e Could bring entire process into memory at load time
* Or bring a page into memory only when it is needed: Demand paging
— Less /O needed, no unnecessary 1/0
— Less memory needed
— Faster response
— More users
* Similar to paging system with swapping
* Page is needed = reference to it
— invalid reference = abort
— not-in-memory = bring to memory
* “Lazy swapper” — never swaps a page into memory unless page will be needed
— Swapper that deals with pages is a pager

Colorado State University

Demand paging: Basic Concepts

 Demand paging: pager brings in only those pages
into memory what are needed
* How to determine that set of pages?
— Need new MMU functionality to implement demand
pPaging
* If pages needed are already memory resident
— No difference from non-demand-paging

* |f page needed and not memory resident

— Need to detect and load the page into memory from
storage
e Without changing program behavior
e Without programmer needing to change code

Colorado State University

Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

Initially valid—invalid bit is set to i on all entries
 Example of a page table snapshot:

Frame # valid-invalid bit

- g (< <

page table

During MMU address translation, if valid—invalid bit in page table
entry is i = page fault

. Colorado State University

Page Table When Some Pages Are Not in Main Memory

0
1
of A 2
valid—invalid
1 B frame " bit¢ . Y
N
2| ¢C o[4 v ‘I
[{E37 0 O
4 E 2 G\il 6 C I:l
F 4 i
Z = 59 |v ; @
6 i
7 H 7 i 9 =
g page table
bt - L L L
-
12
Page 0 in Frame 4 (and disk) 13
Page 1 in Disk 14
15
physical memory
5 Colorado State University

Page Fault

* If thereis a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault

1. Operating system looks at a table to decide:
— Invalid reference = abort
— Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit=v

5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

Colorado State University

Technical Perspective: Multiprogramming

al .
693 .

Solving a problem gives rise to a new class of problem:

Contiguous allocation. Problem: external fragmentation

Non-contiguous, but entire process in memory: Problem:
Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

Demand Paging: Problem: page faults
How to minimize page faults?

Colorado State University

Steps in Handling a Page Fault

page is on

backing store //_\
operating
system @
reference

trap

load M

@J@

restart page table
instruction

free frame (e —
® @

reset page bring in
table missing page

physical
memory

Colorado State University

Stages in Demand Paglng (worse case)

Trap to the operating system
1. Save the user registers and process state
2. Determine that the interrupt was a page fault
3. Check that the page reference was legal and determine the location of the page on the disk

Issue a read from the disk to a free frame:
1. Waitin a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
While waiting, allocate the CPU to some other user
1. Receive an interrupt from the disk I/O subsystem (I/O completed)

2. Save the registers and process state for the other user
3. Determine that the interrupt was from the disk

Correct the page table and other tables to show page is now in memory
1. Wait for the CPU to be allocated to this process again

2. Restore the user registers, process state, and new page table, and then resume the interrupted
instruction

Colorado State University

Performance of Demand Paging (Cont.)

* Three major activities

— Service the interrupt — careful coding means just several hundred
instructions needed

— Read the page —relatively long time
— Restart the process —again just a small amount of time

e Page FaultRate0<p<1
— if p =0 no page faults
— if p =1, every reference is a fault
* Effective Access Time (EAT) Hopefully p <<1
EAT = (1 — p) x memory access time
+ p (page fault overhead

+ swap page out + swap pagein)

Page swap time = seek time + latency time

Colorado State University

10

Demand Paging Simple Numerical Example

* Memory access time = 200 nanoseconds
* Average page-fault service time = 8 milliseconds
e EAT =(1-p)x200ns+ p (8 milliseconds)

=(1-p) x200 + p x 8,000,000 nanosec. Linear with page
=200+ p x 7,999,800 ns fauitrate

* If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

* If want performance degradation < 10 percent, p="?

— 220>200+ 7,999,800 x p
20> 7,999,800 x p

— p <.0000025
— < one page fault in every 400,000 memory accesses

We make some simplifying assumptions here.

Colorado State University

11

Issues: Allocation of physical memory to I/O and programs

 Memory used for holding program pages

* 1/0 buffers (used for transfer of data to disk/network
etc) also consume a big chunk of memory

* Choices:
— Fixed percentage set aside for I/O buffers or
— Processes and the 1/O subsystem compete

Colorado State University

12

Demand paging and the limits of logical memory

* Without demand paging
— All pages of process must be in physical memory
— Logical memory limited to size of physical memory

* With demand paging
— All pages of process need not be in physical memory
— Size of logical address space is no longer constrained by
physical memory
e Example

— 40 pages of physical memory Higher degree of
— 6 processes each of which is 10 pages in size [SLEEICHEINITE

* But each process only needs 5 pages as of now

— Run 6 processes with 10 pages to spare

Colorado State University

13

14

Coping with over-allocation of memory

Example

 What happens if each process needs all 10 pages?
— 60 physical frames needed
* Option: Terminate a user process Q
— But paging should be transparent to the user
* Option: Swap out a process
— Reduces the degree of multiprogramming Q
* Option: Page replacement: selected pages.

Policy? . _soon 4

Colorado State University

Solving the Fork mysteryicopy-on-write)

* Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

— If either process modifies a shared page, only then is page copied

« COW allows more efficient process creation as only modified pages arem
copied

* |n general, free pages are allocated from a pool of zero-fill on-demand
pages
— Pool should always have free frames for fast demand page execution

* Don’t want to have to free a frame as well as other processing on
page fault

— Why zero-out a page before allocating it? (security)

Colorado State University

15

Copy-on-write

Before Process 1 Modifies Page C

physical

process, memory process,

A

> Page A

page B

h 4

|

page C —]

) 4

After Process 1 Modifies Page C

physical
process;, memory process,

A

- page A
T — page B —

page C —

Copy of page C

h 4

Colorado State University

16

What Happens if there is no Free Frame?

* Could be all used up by process pages or
kernel, I/0O buffers, etc

— How much to allocate to each?

* Page replacement — find some page in
memory, but not really in use, page it out
— Algorithm — terminate? swap out? replace the
page?
— Performance — want an algorithm which will result
in minimum number of page faults

 Same page may be brought into memory
several times

Colorado State University

17

Page Replacement

* Prevent over-allocation of memory by
modifying page-fault service routine to include
page replacement

* Page replacement completes separation
between logical memory and physical memory
— large virtual memory can be provided on a
smaller physical memory

e Use modify (dirty) bit to reduce overhead of
page transfers — only modified pages are
written to disk

Colorado State University

18

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

I. Ifthereis a free frame, use it

Il. If thereis no free frame, use a page replacement algorithm to select a
victim frame

lll. Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update
the page and frame tables

4. Continue the process by restarting the instruction that caused
the trap

Note now potentially 2 page transfers for page fault — increasing
EAT

Colorado State University

19

Page Replacement

frame valid—invalid bit

ot ~—
swap out
0 | i to invalid @ page
f|v /
(4) £ victim
reset page \
table for Rl
pagetable . page @ D \
desired
page in
physical
memory
. Colorado State University

More algorithms ...

21

“YoU GOT A PROBLEM WIT
MY ALGORITHM, KID? CUZ

You LOOK LIKE You 60T
A PROBLEM.

G

im unwittingly wanders into a rough section

of the Computer Science department.

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

Page Replacement
Algorithms

Slides based on

* Text by Silberschatz, Galvin, Gagne
e Various sources

22

Page Replacement Algorithms

23

Page-replacement algorithm

— Which frames to replace

— Want lowest page-fault rate

Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string
— String is just page numbers, not full addresses

— Repeated access to the same page does not cause a page
fault

— Results depend on number of frames available

In all our examples, we use 3 frames, and the
reference string of referenced page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

Colorado State University

Graph of Page Faults Versus The Number of Frames

16 |-
14|
12}

o
1

number of page faults

N A~ OO @

| 1 | | | |
1 2 3 4 5 6
number of frames

Colorado State University

24

Page Replacement Algorithms

25

Algorithms
* FIFO

e “Optima
 The Least Recently Used (LRU)

— Exact Implementations
* Time of use field, Stack

— Approximate implementations
* Reference bit
* Reference bit with shift register
* Second chance: clock
* Enhanced second chance: dirty or not?

e Other

|”

Colorado State University

FIFO page replacement algorithm:
Out with the old; in with the new

* When a page must be replaced
— Replace the oldest one

* OS maintains list of all pages currently in
memory
— Page at head of the list: Oldest one
— Page at the tail: Recent arrival
* During a page fault
— Page at the head is removed
— New page added to the tail

Colorado State University

26

First-In-First-Out (FIFO) Algorithm

e Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

* 3 frames (3 pages can be in memory at a time
per process)

reference string
. 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7| 7] 7] 2] P2l [2] 4] [4] [4] o 0| o
| o] o] (o] 3] 3]]3] 2] |2] |2 1] 1 1] [0 o
Ul [ol [of lof 3] 3 32 2] 2 [1

page frames

e 15 page faults (out of 20 accesses)

 Sometimes a page is needed soon after

replacement 7,0,1,2,0,3 (O out},O, . o
Colorado State University

27

Belady’s Anomaly

 Consider Page reference string 1,2,3,4,1,2,5,1,2,3,4,5
— 3 frames, 9 faults, 4 frames 10 faults!

— Sometimes adding more frames can cause more page

faults!
y Lazlo Belady was
* Belady s Anomaly here at CSU. Guest
in my CS530!
16 |
o 14F
S
8 12F
0]
g 10}
o
° 8}
g
e 6Of
-]
c 4 -
2 =
1 1 1 1 1 1
1 D) 3 4 5 6 7 Budapest, 1928

Austin, 2022
number of frames

Colorado State University

28

III

Algorithm e

“Optima

* Replace page that will not be used for longest period of time

reference string
0 3 0 4 2 3 0 3 2 7 0 1

0

page frames
— 4™ access: replace 7 because we will not use if got the longest time...
— 9 page replacements is optimal for the example

* But how do we know the future pages needed?
— Can’ t read the future in reality.

e Used for measuring how well an algorithm performs.

Colorado State University

29

Least Recently Used (LRU) Algorithm

e Use past knowledge rather than future

Replace page that has not been used in the most amount
of time (4th access — page 7 is least recently used ...)
Track usage

Associate time of last use with each page carefully!

reference string
2 0 83 0 4 2 3 0 8 2

7772
38
3222

page frames

12 faults — better than FIFO (15) but worse than OPT (9)
Generally good algorithm and frequently used
But how to implement it by tracking the page usage?

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Colorado State University

30

31

Least Recently Used (LRU) Algorithm

LRU page number is marked (*).
Unmarked if that page is accessed.

LRU COUNTER

5807572858
Eamwmmmm@
X|3| MRIOHIS [8]8]8
?EWDQ@@BEEH

Number of Pages: 3
Number of Request 10

LRU applied to cache memory.

Colorado State University

https://www.youtube.com/watch?v=wwQTmLZ_t8M
https://www.youtube.com/watch?v=R5ON3iwx78M

Least Recently Used (LRU) Algorithm

32

* Use past knowledge rather than future

e 12 faults — better than FIFO (15) but worse than
OPT (9)

* Tracking the page usage. One approach: mark
least recently used page each time.

7 o 12 Jo [3 Jo 4 f2 3 o [3]2 ¢ f2]o i |7 0 i
7 7 7* 2 2 2* 2 4 4 4* 0 0 O0* 1

o o o o o o o o0 3 3 3 3 3
1 1 3 3 3* 2 2 2 2* 2 2

e Other approach: use stack for tracking (soon)

Colorado State University

LRU Algorithm: Implementations

Possible tracking implementations

* Counter implementation

— Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the

counter

— When a page needs to be changed, look at the counters
to find smallest value
e Search through table needed

e Stack implementation
— Keep a stack of page numbers in a double link form:
— Page referenced:
* move it to the top
* requires 6 pointers to be changed
— Each update expensive
— No search for replacement needed (bottom is least recently used)

Colorado State University

33

Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

Most recently used -> 2 7 I T
a b
1 2
0 1
7 0 This shows tracking stack,
Least recently used -> 4 4 not actual frames.
stack stack
before after
a b

Too slow if done in software

Colorado State University

34

Use Of A Stack to Record Most Recent Page References

Examine this at home.

Most recently used -> 0 2 1 2 1 2
4 7 0 7 1 0 1 2 1 2 7 1
4 4 0 7 7 0 0 0 1 2 7
4 4 4 7 7 7 0 0 O
Least recently used -> 4 4 4 4 4 4
Detailed version of previous slide.
This shows tracking stack, not actual frames.
e Colorado State University

Use Of A Stack to Record Most Recent Page References

reference string
2 0 3 0 4 2 3 0 3 2

7 7 7 2
3 3
8 2 2 2
page frames

Earlier problem (upper) revisited.
This shows tracking stack, not actual frames.

MRU-> 12 0 3 0 4 2 3 0 3
7 01 2 0 3 0 4 2 3 O
/70 1 2 2 3 0 4 2 2

LRU->

i Colorado State University

LRU Approximation Algorithms

37

LRU needs special hardware and still slow

REfe re n Ce 1 bit per frame to track history
— With each page associate a bit, initially =0
— When the page is referenced, bit setto 1

— Replace any page with reference bit = 0 (if one

exists)
* 0 implies not used since initialization
 We do not know the order, however.

Advanced schemes using more bits: preserve more
information about the order

Colorado State University

Ref bit + history shift register

LRU apprOX|mat|On 9 bits per frame to track history
Ref bit: 1 indicates used, Shift register records history. Examples:

Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000
1 1001 0001 1100 1000
0 01100011 0011 0001

* Interpret 8-bit bytes as unsigned integers
e Page with the lowest number is the LRU page: replace.
Examples:
e 00000000 : Not used in last 8 periods
e 01100101 : Used 4 times in the last 8 periods
e 11000100 used more recently than 01110111

Colorado State University

38

Second-chance algorithm

 Second-chance algorithm

— Generally FIFO, plus hardware-provided reference
bit
— Avoid throwing out a heavily used page

— “Clock” replacement (using circular queue): hand
as a pointer

— Consider next page
* Reference bit =0 ->replace it
* reference bit = 1 then:
— set reference bit 0, leave page in memory
— consider next page, subject to same rules

Colorado State University

39

Second-Chance (clock) Page-Replacement Algorithm

reference pages

bits /\
o]
v
o]
t v
dctm .
v
o]
v
_/

circular queue of pages

(a)

40

reference pages
bits

o
v
o)
v
o
v
o)
v
=]
v
N\,

circular queue of pages

(b)

* Clock replacement: hand
as a pointer

* Consider next page

— Reference bit=0->
replace it

— reference bit = 1 then:

* set reference bit 0, leave
page in memory

* consider next page,
subject to same rules

Example:

(a) Change to O, give it
another chance

(b) Already 0. Replace page

Colorado State University

Enhanced Second-Chance Algorithm

41

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

* Take ordered pair (reference, modify)

1. (0, O0) neither recently used not modified — best page to
replace

2. (0, 1) not recently used but modified — not quite as good,
must write out before replacement

3. (1, 0) recently used but clean — probably will be used again
soon

4. (1, 1) recently used and modified — probably will be used
again soon and need to write out before replacement

* When page replacement called for, use the clock scheme
but use the four classes replace page in lowest non-empty
class

— Might need to search circular queue several times

Colorado State University

Counting Algorithms

 Keep a counter of the number of references
that have been made to each page

— Not common

e Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

 Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

Colorado State University

42

Clever Techniques for enhancing Perf

* Keep a buffer (pool) of free frames, always
— Then frame available when needed, not found at fault
time
— Read page into free frame and select victim to evict
and add to free pool

— When convenient, evict victim
* Keep list of modified pages

— When backing store is otherwise idle, write pages there
and set to non-dirty (being proactivel!)

* Keep free frames’ previous contents intact and
note what is in them

— If referenced again before reused, no need to load
contents again from disk

— Generally useful to reduce penalty if wrong victim
frame selected

Colorado State University

43

Buffering and applications

e Some applications (like databases) often
understand their memory/disk usage better
than the OS

— Provide their own buffering schemes

— If both the OS and the application were to buffer
* Twice the I/O is being utilized for a given I/O

— OS may provide “raw access” disk to special
programs without file system services.

Colorado State University

44

	Slide 1
	Slide 2: Demand Paging
	Slide 3: Demand paging: Basic Concepts
	Slide 4: Valid-Invalid Bit
	Slide 5: Page Table When Some Pages Are Not in Main Memory
	Slide 6: Page Fault
	Slide 7: Technical Perspective: Multiprogramming
	Slide 8: Steps in Handling a Page Fault
	Slide 9: Stages in Demand Paging (worse case)
	Slide 10: Performance of Demand Paging (Cont.)
	Slide 11: Demand Paging Simple Numerical Example
	Slide 12: Issues: Allocation of physical memory to I/O and programs
	Slide 13: Demand paging and the limits of logical memory
	Slide 14: Coping with over-allocation of memory
	Slide 15: Solving the Fork mystery(Copy-on-Write)
	Slide 16: Copy-on-write
	Slide 17: What Happens if there is no Free Frame?
	Slide 18: Page Replacement
	Slide 19: Basic Page Replacement
	Slide 20: Page Replacement
	Slide 21: More algorithms …
	Slide 22
	Slide 23: Page Replacement Algorithms
	Slide 24: Graph of Page Faults Versus The Number of Frames
	Slide 25: Page Replacement Algorithms
	Slide 26: FIFO page replacement algorithm: Out with the old; in with the new
	Slide 27: First-In-First-Out (FIFO) Algorithm
	Slide 28: Belady’s Anomaly
	Slide 29: “Optimal” Algorithm Belady 66
	Slide 30: Least Recently Used (LRU) Algorithm
	Slide 31: Least Recently Used (LRU) Algorithm
	Slide 32: Least Recently Used (LRU) Algorithm
	Slide 33: LRU Algorithm: Implementations
	Slide 34: Use Of A Stack to Record Most Recent Page References
	Slide 35: Use Of A Stack to Record Most Recent Page References Examine this at home.
	Slide 36: Use Of A Stack to Record Most Recent Page References
	Slide 37: LRU Approximation Algorithms
	Slide 38: Ref bit + history shift register
	Slide 39: Second-chance algorithm
	Slide 40: Second-Chance (clock) Page-Replacement Algorithm
	Slide 41: Enhanced Second-Chance Algorithm
	Slide 42: Counting Algorithms
	Slide 43: Clever Techniques for enhancing Perf
	Slide 44: Buffering and applications

