
1 1

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 19

CS370 Operating Systems

Virtual Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Demand Paging
• Could bring entire process into memory at load time

• Or bring a page into memory only when it is needed: Demand paging

– Less I/O needed, no unnecessary I/O

– Less memory needed

– Faster response

– More users

• Similar to paging system with swapping

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• “Lazy swapper” – never swaps a page into memory unless page will be needed

– Swapper that deals with pages is a pager

3

Demand paging: Basic Concepts

• Demand paging: pager brings in only those pages
into memory what are needed

• How to determine that set of pages?
– Need new MMU functionality to implement demand

paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from

storage
• Without changing program behavior

• Without programmer needing to change code

4

Valid-Invalid Bit

• With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table
entry is i  page fault

5

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk

6

Page Fault

• If there is a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference  abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

7

Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:

• Contiguous allocation. Problem: external fragmentation

• Non-contiguous, but entire process in memory: Problem:
Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

• Demand Paging: Problem: page faults

• How to minimize page faults?

8

Steps in Handling a Page Fault

9

Stages in Demand Paging (worse case)

1. Trap to the operating system

1. Save the user registers and process state

2. Determine that the interrupt was a page fault

3. Check that the page reference was legal and determine the location of the page on the disk

2. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

3. While waiting, allocate the CPU to some other user

1. Receive an interrupt from the disk I/O subsystem (I/O completed)

2. Save the registers and process state for the other user

3. Determine that the interrupt was from the disk

4. Correct the page table and other tables to show page is now in memory

1. Wait for the CPU to be allocated to this process again

2. Restore the user registers, process state, and new page table, and then resume the interrupted
instruction

10

Performance of Demand Paging (Cont.)

• Three major activities
– Service the interrupt – careful coding means just several hundred

instructions needed
– Read the page – relatively long time
– Restart the process – again just a small amount of time

• Page Fault Rate 0  p  1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
 EAT = (1 – p) x memory access time
 + p (page fault overhead
 + swap page out + swap page in)

Hopefully p <<1

Page swap time = seek time + latency time

11

Demand Paging Simple Numerical Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 ns + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000 nanosec.
 = 200 + p x 7,999,800 ns

• If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent, p = ?

– 220 > 200 + 7,999,800 x p solve this inequality
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Linear with page
fault rate

We make some simplifying assumptions here.

12

Issues: Allocation of physical memory to I/O and programs

• Memory used for holding program pages

• I/O buffers (used for transfer of data to disk/network
etc) also consume a big chunk of memory

• Choices:

– Fixed percentage set aside for I/O buffers or

– Processes and the I/O subsystem compete

13

Demand paging and the limits of logical memory

• Without demand paging

– All pages of process must be in physical memory

– Logical memory limited to size of physical memory

• With demand paging

– All pages of process need not be in physical memory

– Size of logical address space is no longer constrained by
physical memory

• Example

– 40 pages of physical memory

– 6 processes each of which is 10 pages in size
• But each process only needs 5 pages as of now

– Run 6 processes with 10 pages to spare

Higher degree of
multiprogramming

14

Coping with over-allocation of memory

Example

• Physical memory = 40 pages

• 6 processes each of which is of size 10 pages
– But are using 5 pages each as of now

• What happens if each process needs all 10 pages?
– 60 physical frames needed

• Option: Terminate a user process
– But paging should be transparent to the user

• Option: Swap out a process
– Reduces the degree of multiprogramming

• Option: Page replacement: selected pages.
Policy? soon

15

Solving the Fork mystery(Copy-on-Write)

• Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

– If either process modifies a shared page, only then is page copied

• COW allows more efficient process creation as only modified pages are
copied

• In general, free pages are allocated from a pool of zero-fill on-demand
pages

– Pool should always have free frames for fast demand page execution

• Don’t want to have to free a frame as well as other processing on
page fault

– Why zero-out a page before allocating it? (security)

For
security

16

Copy-on-write
Before Process 1 Modifies Page C

After Process 1 Modifies Page C

17

What Happens if there is no Free Frame?

• Could be all used up by process pages or
kernel, I/O buffers, etc
– How much to allocate to each?

• Page replacement – find some page in
memory, but not really in use, page it out
– Algorithm – terminate? swap out? replace the

page?

– Performance – want an algorithm which will result
in minimum number of page faults

• Same page may be brought into memory
several times

18

Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to include
page replacement

• Page replacement completes separation
between logical memory and physical memory
– large virtual memory can be provided on a
smaller physical memory

• Use modify (dirty) bit to reduce overhead of
page transfers – only modified pages are
written to disk

19

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
I. If there is a free frame, use it

II. If there is no free frame, use a page replacement algorithm to select a
victim frame

III. Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update
the page and frame tables

4. Continue the process by restarting the instruction that caused
the trap

Note now potentially 2 page transfers for page fault – increasing
EAT

20

Page Replacement

Page table after swap

21

More algorithms …

22 22

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Page Replacement
Algorithms

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

23

Page Replacement Algorithms

• Page-replacement algorithm
– Which frames to replace
– Want lowest page-fault rate

• Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string
– String is just page numbers, not full addresses
– Repeated access to the same page does not cause a page

fault
– Results depend on number of frames available

• In all our examples, we use 3 frames, and the
reference string of referenced page numbers is

 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

24

Graph of Page Faults Versus The Number of Frames

What we would generally expect

25

Page Replacement Algorithms

Algorithms

• FIFO

• “Optimal”

• The Least Recently Used (LRU)
– Exact Implementations

• Time of use field, Stack

– Approximate implementations
• Reference bit

• Reference bit with shift register

• Second chance: clock

• Enhanced second chance: dirty or not?

• Other

26

FIFO page replacement algorithm:
Out with the old; in with the new

• When a page must be replaced

– Replace the oldest one

• OS maintains list of all pages currently in
memory

– Page at head of the list: Oldest one

– Page at the tail: Recent arrival

• During a page fault

– Page at the head is removed

– New page added to the tail

27

First-In-First-Out (FIFO) Algorithm

• Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time
per process)

• 15 page faults (out of 20 accesses)

• Sometimes a page is needed soon after
replacement 7,0,1,2,0,3 (0 out),0, ..

28

Belady’s Anomaly

• Consider Page reference string 1,2,3,4,1,2,5,1,2,3,4,5

– 3 frames, 9 faults, 4 frames 10 faults! Try yourself.

– Sometimes adding more frames can cause more page
faults!
• Belady’s Anomaly

Lazlo Belady was
here at CSU. Guest

in my CS530!

Budapest, 1928
Austin, 2022

29

“Optimal” Algorithm Belady 66

• Replace page that will not be used for longest period of time

– 4th access: replace 7 because we will not use if got the longest time…

– 9 page replacements is optimal for the example

• But how do we know the future pages needed?
– Can’t read the future in reality.

• Used for measuring how well an algorithm performs.

30

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount

of time (4th access – page 7 is least recently used …_)

• Associate time of last use with each page

• 12 faults – better than FIFO (15) but worse than OPT (9)
• Generally good algorithm and frequently used
• But how to implement it by tracking the page usage?

Track usage
carefully!

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

31

Least Recently Used (LRU) Algorithm

LRU page number is marked (*).
Unmarked if that page is accessed.

LRU applied to cache memory.

https://www.youtube.com/watch?v=wwQTmLZ_t8M
https://www.youtube.com/watch?v=R5ON3iwx78M

32

Least Recently Used (LRU) Algorithm

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7* 7* 2 2 2* 2* 4 4 4* 0 0 0* 1

0 0 0* 0 0 0 0 0* 3 3 3 3 3

1 1 1* 3 3 3* 2 2 2 2* 2 2

* Use past knowledge rather than future

• 12 faults – better than FIFO (15) but worse than
OPT (9)

• Tracking the page usage. One approach: mark
least recently used page each time.

• Other approach: use stack for tracking (soon)

33

LRU Algorithm: Implementations
Possible tracking implementations
• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter

– When a page needs to be changed, look at the counters
to find smallest value
• Search through table needed

• Stack implementation
– Keep a stack of page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– Each update expensive
– No search for replacement needed (bottom is least recently used)

34

Use Of A Stack to Record Most Recent Page References

Too slow if done in software

Least recently used ->

Most recently used ->

This shows tracking stack,
not actual frames.

35

Use Of A Stack to Record Most Recent Page References
Examine this at home.

Least recently used ->

Most recently used ->

4 7 0 7 1 0 1 2 1 2 7 1 2

4 7 0 7 1 0 1 2 1 2 7 1 2

4 7 0 7 1 0 1 2 1 2 7 1

4 4 0 7 7 0 0 0 1 2 7

4 4 4 7 7 7 0 0 0

4 4 4 4 4 4

Detailed version of previous slide.
This shows tracking stack, not actual frames.

36

Use Of A Stack to Record Most Recent Page References

LRU->

MRU->

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3

7 0 1 2 0 3 0 4 2 3 0

7 0 1 2 2 3 0 4 2 2

Earlier problem (upper) revisited.
This shows tracking stack, not actual frames.

37

LRU Approximation Algorithms

• LRU needs special hardware and still slow

• Reference 1 bit per frame to track history

– With each page associate a bit, initially = 0

– When the page is referenced, bit set to 1

– Replace any page with reference bit = 0 (if one
exists)
• 0 implies not used since initialization

• We do not know the order, however.

• Advanced schemes using more bits: preserve more
information about the order

38

Ref bit + history shift register

LRU approximation 9 bits per frame to track history

Ref bit: 1 indicates used, Shift register records history. Examples:

Ref Bit Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000

1 1001 0001 1100 1000

0 0110 0011 0011 0001

• Interpret 8-bit bytes as unsigned integers
• Page with the lowest number is the LRU page: replace.

Examples:
• 00000000 : Not used in last 8 periods
• 01100101 : Used 4 times in the last 8 periods
• 11000100 used more recently than 01110111

39

Second-chance algorithm

• Second-chance algorithm

– Generally FIFO, plus hardware-provided reference
bit

– Avoid throwing out a heavily used page

– “Clock” replacement (using circular queue): hand
as a pointer

– Consider next page
• Reference bit = 0 -> replace it

• reference bit = 1 then: give it another chance

– set reference bit 0, leave page in memory

– consider next page, subject to same rules

40

Second-Chance (clock) Page-Replacement Algorithm

• Clock replacement: hand
as a pointer

• Consider next page
– Reference bit = 0 ->

replace it
– reference bit = 1 then:

• set reference bit 0, leave
page in memory

• consider next page,
subject to same rules

Example:
(a) Change to 0, give it
another chance
(b) Already 0. Replace page

41

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

• Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to

replace
2. (0, 1) not recently used but modified – not quite as good,

must write out before replacement
3. (1, 0) recently used but clean – probably will be used again

soon
4. (1, 1) recently used and modified – probably will be used

again soon and need to write out before replacement
• When page replacement called for, use the clock scheme

but use the four classes replace page in lowest non-empty
class
– Might need to search circular queue several times

42

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page
– Not common

• Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

43

Clever Techniques for enhancing Perf

• Keep a buffer (pool) of free frames, always
– Then frame available when needed, not found at fault

time
– Read page into free frame and select victim to evict

and add to free pool
– When convenient, evict victim

• Keep list of modified pages
– When backing store is otherwise idle, write pages there

and set to non-dirty (being proactive!)

• Keep free frames’ previous contents intact and
note what is in them
– If referenced again before reused, no need to load

contents again from disk
– Generally useful to reduce penalty if wrong victim

frame selected

44

Buffering and applications

• Some applications (like databases) often
understand their memory/disk usage better
than the OS

– Provide their own buffering schemes

– If both the OS and the application were to buffer
• Twice the I/O is being utilized for a given I/O

– OS may provide “raw access” disk to special
programs without file system services.

	Slide 1
	Slide 2: Demand Paging
	Slide 3: Demand paging: Basic Concepts
	Slide 4: Valid-Invalid Bit
	Slide 5: Page Table When Some Pages Are Not in Main Memory
	Slide 6: Page Fault
	Slide 7: Technical Perspective: Multiprogramming
	Slide 8: Steps in Handling a Page Fault
	Slide 9: Stages in Demand Paging (worse case)
	Slide 10: Performance of Demand Paging (Cont.)
	Slide 11: Demand Paging Simple Numerical Example
	Slide 12: Issues: Allocation of physical memory to I/O and programs
	Slide 13: Demand paging and the limits of logical memory
	Slide 14: Coping with over-allocation of memory
	Slide 15: Solving the Fork mystery(Copy-on-Write)
	Slide 16: Copy-on-write
	Slide 17: What Happens if there is no Free Frame?
	Slide 18: Page Replacement
	Slide 19: Basic Page Replacement
	Slide 20: Page Replacement
	Slide 21: More algorithms …
	Slide 22
	Slide 23: Page Replacement Algorithms
	Slide 24: Graph of Page Faults Versus The Number of Frames
	Slide 25: Page Replacement Algorithms
	Slide 26: FIFO page replacement algorithm: Out with the old; in with the new
	Slide 27: First-In-First-Out (FIFO) Algorithm
	Slide 28: Belady’s Anomaly
	Slide 29: “Optimal” Algorithm Belady 66
	Slide 30: Least Recently Used (LRU) Algorithm
	Slide 31: Least Recently Used (LRU) Algorithm
	Slide 32: Least Recently Used (LRU) Algorithm
	Slide 33: LRU Algorithm: Implementations
	Slide 34: Use Of A Stack to Record Most Recent Page References
	Slide 35: Use Of A Stack to Record Most Recent Page References Examine this at home.
	Slide 36: Use Of A Stack to Record Most Recent Page References
	Slide 37: LRU Approximation Algorithms
	Slide 38: Ref bit + history shift register
	Slide 39: Second-chance algorithm
	Slide 40: Second-Chance (clock) Page-Replacement Algorithm
	Slide 41: Enhanced Second-Chance Algorithm
	Slide 42: Counting Algorithms
	Slide 43: Clever Techniques for enhancing Perf
	Slide 44: Buffering and applications

