CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L19
Virtual Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Please be considerate

* Allow other students to focus
— No talking (except for iClicker sessions), humming, etc.
— No cell phone use (except for iClicker)

— No laptop/handheld use, unless pledge submitted, and rules
followed.

— No leaving in the middle of the class or just after an iClicker
session.

Colorado State University

Project D2 Progress report

Your group has been assigned a Canvas Group
(Research or Development).

One person will submit the report on behalf of the
group. Due Nov 1.

— Use the format specifications for the Final report, with about
half the size.

When graded, all persons will automatically receive the

SCOIe. Note: A groups involving both students from section will needs special
attention. Please check with the TA.

All members of a group are expected to contribute
their fair share of effort. We will check.

Colorado State University

Page Replacement Algorithms

Algorithms
* FIFO

e “Optima
 The Least Recently Used (LRU)

— Exact Implementations
* Time of use field, Stack

— Approximate implementations
* Reference bit
* Reference bit with shift register
* Second chance: clock
* Enhanced second chance: dirty or not?

e Other

|”

. Colorado State University

First-In-First-Out (FIFO) Algorithm

e Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

* 3 frames (3 pages can be in memory at a time
per process)

reference string
. 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7| 7] 7] 2] P2l [2] 4] [4] [4] o 0| o
| o] o] (o] 3] 3]]3] 2] |2] |2 1] 1 1] [0 o
Ul [ol [of lof 3] 3 32 2] 2 [1

page frames

e 15 page faults (out of 20 accesses)

 Sometimes a page is needed soon after

replacement 7,0,1,2,0,3 (O out},O, . o
Colorado State University

III

Algorithm s

“Optima

* Replace page that will not be used for longest period of time

reference string
0 3 0 4 2 3 0 3 2 7 0 1

0

page frames

— 4™ access: replace 7 because we will not use if got the longest time...
— 9 page replacements is optimal for the example

* But how do we know the future pages needed?
— Can’ t read the future in reality.

e Used for measuring how well an algorithm performs.

Colorado State University

Least Recently Used (LRU) Algorithm

Use past knowledge rather than future

Replace page that has not been used in the most amount
of time (4th access — page 7 is least recently used ...)
Track usage

Associate time of last use with each page carefully!

reference string
2 0 83 0 4 2 3 0 8 2

7772
38
3222

page frames

12 faults — better than FIFO (15) but worse than OPT (9)
Generally good algorithm and frequently used
But how to implement it by tracking the page usage?

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

ICQ

Optimal Page replacement

Pre-Q1. show how optimal page replacement algorithm will work given 3 frames
and reference string in the top row. Find hit ratio and pages in the frame at the end.

0 112131001 4100112 38
O 0 O O

1 1 1
2 3

Get at least the next 4 columns (..0 1 4 0). More if you can ..

Take 1.5 minutes and then wait for the next slide.

ColoradoState University

Optimal Page replacement

Q1. show how optimal page replacement algorithm will work given 3 frames and
reference string in the top row. Find hit ratio and pages in the frame at the end.

0 1121310104101 2 38
O 0 O O 0 2 2
1 1 1 1 1 3
2 3 4 4 4

A. Notwhat I got.
B. I haven't tried.
C. This is what I have.

Colorada$tate University

Optimal Page replacement

Pre-Q2. show how optimal page replacement algorithm will work given 3 frames
and reference string in the top row. Find hit ratio and pages in the frame at the end.

0 1121310104101 2 38
O 0 O O 0 2 2
1 1 1 1 1 3

2 3 4 4 4
H H H H H

Assuming this is correct.
Get the Hit ratio=__/_, final pages: {_,_,_}

Colorada$tate University

Optimal Page replacement

Q2. show how optimal page replacement algorithm will work given 3 frames and
reference string in the top row. Find hit ratio and pages in the frame at the end.

0 1121310104101 2 38
O 0 O O 0 2 2
1 1 1 1 1 3

2 3 4 4 4
H H H H H

Hit ratio= 5/12, final pages: {2,3,4}
A. Not what I got.

B. I haven't tried.
C. Thisis what I have.

Colorada$tate University

Answers

Colorado State University

13

Optimal Page replacement

Q1, 2. show how optimal page replacement algorithm will work given 3 frames and
reference string in the top row. Find hit ratio and pages in the frame at the end.

0 1121310104101 2 38
O 0 O O 0 2 2
1 1 1 1 1 3

2 3 4 4 4
H H H H H

Hit ratio= 5/12, final pages: {2,3,4}

Colorada$tate University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Back from I1CQ

15

LRU Algorithm: Implementations

Possible tracking implementations

* Counter implementation

— Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the

counter

— When a page needs to be changed, look at the counters
to find smallest value
e Search through table needed

e Stack implementation
— Keep a stack of page numbers in a double link form:
— Page referenced:
* move it to the top
* requires 6 pointers to be changed
— Each update expensive
— No search for replacement needed (bottom is least recently used)

Colorado State University

16

Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

Most recently used -> 2 7 I T
a b
1 2
0 1
7 0 This shows tracking stack,
Least recently used -> 4 4 not actual frames.
stack stack
before after
a b

Too slow if done in software

Colorado State University

17

LRU Approximation Algorithms

18

LRU needs special hardware and still slow

REfe re n Ce 1 bit per frame to track history
— With each page associate a bit, initially =0
— When the page is referenced, bit setto 1

— Replace any page with reference bit = 0 (if one

exists)
* 0 implies not used since initialization
 We do not know the order, however.

Advanced schemes using more bits: preserve more
information about the order

Colorado State University

Ref bit + history shift register

LRU apprOX|mat|On 9 bits per frame to track history
Ref bit: 1 indicates used, Shift register records history. Examples:

Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000
1 1001 0001 1100 1000
0 01100011 0011 0001

* Interpret 8-bit bytes as unsigned integers
e Page with the lowest number is the LRU page: replace.
Examples:
e 00000000 : Not used in last 8 periods
e 01100101 : Used 4 times in the last 8 periods
e 11000100 used more recently than 01110111

Colorado State University

19

Second-chance algorithm

 Second-chance algorithm

— Generally FIFO, plus hardware-provided reference
bit
— Avoid throwing out a heavily used page

— “Clock” replacement (using circular queue): hand
as a pointer

— Consider next page
* Reference bit =0 ->replace it
* reference bit = 1 then:
— set reference bit 0, leave page in memory
— consider next page, subject to same rules

Colorado State University

20

Second-Chance (clock) Page-Replacement Algorithm

reference pages

bits /\
o]
v
o]
t v
dctm .
v
o]
v
_/

circular queue of pages

(a)

21

reference pages
bits

o
v
o)
v
o
v
o)
v
=]
v
N\,

circular queue of pages

(b)

* Clock replacement: hand
as a pointer

* Consider next page

— Reference bit=0->
replace it

— reference bit = 1 then:

* set reference bit 0, leave
page in memory

* consider next page,
subject to same rules

Example:

(a) Change to O, give it
another chance

(b) Already 0. Replace page

Colorado State University

Enhanced Second-Chance Algorithm

22

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

* Take ordered pair (reference, modify)

1. (0, O0) neither recently used not modified — best page to
replace

2. (0, 1) not recently used but modified — not quite as good,
must write out before replacement

3. (1, 0) recently used but clean — probably will be used again
soon

4. (1, 1) recently used and modified — probably will be used
again soon and need to write out before replacement

* When page replacement called for, use the clock scheme
but use the four classes replace page in lowest non-empty
class

— Might need to search circular queue several times

Colorado State University

Counting Algorithms

 Keep a counter of the number of references
that have been made to each page

— Not common

e Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

 Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

Colorado State University

23

Clever Techniques for enhancing Perf

* Keep a buffer (pool) of free frames, always
— Then frame available when needed, not found at fault
time
— Read page into free frame and select victim to evict
and add to free pool

— When convenient, evict victim
* Keep list of modified pages

— When backing store is otherwise idle, write pages there
and set to non-dirty (being proactivel!)

* Keep free frames’ previous contents intact and
note what is in them

— If referenced again before reused, no need to load
contents again from disk

— Generally useful to reduce penalty if wrong victim
frame selected

Colorado State University

24

Buffering and applications

e Some applications (like databases) often
understand their memory/disk usage better
than the OS

— Provide their own buffering schemes

— If both the OS and the application were to buffer
* Twice the I/O is being utilized for a given I/O

— OS may provide “raw access” disk to special
programs without file system services.

Colorado State University

25

Allocation of Frames

How to allocate frames to processes?

— Each process needs minimum number of frames
Depending on specific needs of the process

— Maximum of course is total frames in the system

 Two major allocation schemes

— fixed allocation
— priority allocation

* Many variations

Colorado State University

26

Fixed Allocation

* Equal allocation — For example, if there are 100 frames
(after allocating frames for the OS) and 5 processes, give
each process 20 frames

— Keep some as free frame buffer pool

* Proportional allocation — Allocate according to the size of
process (need based)

— Dynamic as degree of multiprogramming, process sizes change

Example:

sj= size of process p; Processes P1 P2 m = 62
m = total number of frames =127

Sj a =ﬂ X 62 ~ 4
a; = allocation for p; = S Xm 17137

ay=rl X 62 ~ 57

Colorado State University

27

Priority Allocation

 Use a proportional allocation scheme using
priorities rather than size

* If process P; generates a page fault,

— select for replacement one of its frames or

— select for replacement a frame from a process
with lower priority number

Colorado State University

28

Global vs. Local Allocation

* Global replacement — process selects a
replacement frame from the set of all frames;
one process can take a frame from another

— But then process execution time can vary greatly

— But greater throughput, so more common

* Local replacement — each process selects from
only its own set of allocated frames
— More consistent per-process performance
— But possibly underutilized memory

Colorado State University

29

Problem: Thrashing

* If a process does not have “enough” pages, the
page-fault rate is very high
— Page fault to get page
— Replace existing frame
— But quickly need replaced frame back

— This leads to:

* Low CPU utilization, leading to

* Operating system thinking that it needs to increase the
degree of multiprogramming leading to

* Another process added to the system

* Thrashing = a process is busy swapping pages in
and out

Colorado State University

30

Thrashing (Cont.)

31

CPU utilization

A

|
" thrashing

degree of multiprogramming

Colorado State University

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
— Process migrates from one locality to another
— Localities may overlap

 Why does thrashing occur in a process?

size of locality > total memory size allocated

— Limit effects by using local or priority page replacement

Colorado State University

32

33

Locality In A Memory-Reference Pattern

32

memory address
S 2

[
-

page numbers

‘! |||‘| e \I”;”H‘ HHI” "F!!""‘r'y"“:!I\|\|-u|m||w\mmnm‘u\' w" :
: e ”";'Hy'“;;i:'lui"‘ I e
i“”““ - |‘|“. }*‘w |I“ H‘HII \|\|| |5L|
dl !-!.\ N TN, T
%l I'H\'HMHW "“ '||.;| o H “
HI“M\ ll|‘i”|““\ “ el ||:||| \ ||| I \||1| Il
by
T
1
| i
e ‘uil . ‘
1

L il :i

| Iy [" \|+m1 :

| ;::;||::':|miil|ﬂ. i \HM s |\
 .‘:|”.7 \.I“l' \H] ‘H\H) \”“

T AT T T 1T

| ;';‘f:‘;ﬁi‘ '\‘Jiuiuémm\\ |I|| ||‘\|\| I|'|||||'||; I"“U”‘

execution ime —

Colorado State University

Working-Set Model

« A =working-set window = a fixed number of page references

Example: A =10
page reference table
...2615777751623412344434344413234443444., ..

s] v]
| |
t1 t2

WS(t) = {1,2,5,6,7) WSi(t,) = {34}

F 3

WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in time)

— if Atoo small, working set will not encompass entire locality
— if Atoo large, working set will encompass several localities
— Wws is an approximation of locality

e D=2X WSS,;=total demand for frames
— if D> m = Thrashing

— Policy if D > m, then suspend or swap out one of the processes

Colorado State University

34

35

Page-Fault Frequency Approach

More direct approach than WSS

Establish “acceptable” page-fault frequency (PFF)
rate for a process and use local replacement policy

— If actual rate too low, process loses frame
— If actual rate too high, process gains frame

page-fault rate

increase number
of frames

upper bound

lower bound

decrease number
of frames

number of frames

Colorado State University

36

Working Sets and Page Fault Rates

Direct relationship between working set of a process and its page-

fault rate

Working set changes over time

Peaks and valleys over time

working set

page
fault
rate

time

Peaks occur at locality changes: 3 working sets

Colorado State University

37

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

File is then in memory instead of disk
A file is initially read using demand paging
— A page-sized portion of the file is read from the file system into a
physical page
— Subsequent reads/writes to/from the file are treated as ordinary
memaory accesses

Simplifies and speeds file access by driving file 1/0 through
memory rather than read () and write () system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared
But when does written data make it to disk?

— Periodically and / or at file close () time

— For example, when the pager scans for dirty pages

Colorado State University

Memory Mapped Files

r---- 1
! -4 2
| |
i--r—-+- 8
T }---- AR
I r=> N L
- -7 (1> 8 < (! : :' 5
8 ra---r! ~rtrrq 6
4 i I : I | : :
- S
I SRR ——
6 Fiirt! e
| | |
R e s A ER AN
process A ! L1 > e ——f -t 1 process B
, Tl el e g < Y
virtual memory | N |, virtual memory
[::
O e -2t
physical memory
—] [—
[1]2]3[4]5]6]
disk file Disk File uses 6 blocks

Page tables used for mapping

” Colorado State University

Allocating Kernel Memory

* Treated differently from user memory
* Often allocated from a free-memory pool

— Kernel requests memory for structures of varying sizes

* Process descriptors, semaphores, file objects etc.
e Often much smaller than page size

— Some kernel memory needs to be contiguous
* e.g. for devicel/O

— approaches (skipped)

Colorado State University

39

Other Considerations -- Prepaging

* Prepaging
— To reduce the large number of page faults that
occurs at process startup

— Prepage all or some of the pages a process will
need, before they are referenced

— But if prepaged pages are unused, I/0 and memory
was wasted

— Assume s pages are prepaged and fraction a of the
pages is used

e Iscost of s *a saved pages faults > or < than the cost of
prepaging s *(1- a) unnecessary pages?

* o near zero = greater prepaging loses

Colorado State University

40

Other Issues — Page Size

* Sometimes OS designers have a choice
— Especially if running on custom-built CPU

* Page size selection must take into consideration:
— Fragmentation
— Page table size
— |/O overhead
— Number of page faults
— Locality
— TLB size and effectiveness

* Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

* On average, growing over time

Colorado State University

41

42

Page size issues — TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)

Ideally, the working set of each process is stored
in the TLB

— Otherwise there is a high degree of page faults

Colorado State University

Other Issues — Program Structure

* Program structure
— 1int[128,128] data; 1: row, 7J: column
— Each row is stored in one page
— Program 1
for (3 = 0; 7 <128; j++)
for (1 = 0; 1 < 128; i++)
datali,3] = 0;

128 x 128 = 16,384 page faults
— Program 2 inner loop =1 row =1 page
for (i = 0; 1 < 128; i++)

fO]f (j = M j < 128; j++)samepage
datal[i,Jj] = 0;

128 page faults

Colorado State University

43

Example: MS Windows

46

e Uses demand paging with clustering. Clustering

brings in pages surrounding the faulting page

Processes are assigned working set minimum and
working set maximum

— Working set minimum is the minimum number of pages
the process is guaranteed to have in memory

— A process may be assigned as pages up to its working
set maximum

When the amount of free memory in the system

falls below a threshold, automatic working set

trimming is performed to restore the amount of

free memory

— Working set trimming removes pages from processes
that have pages in excess of their working set minimum

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2024

File-system

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

47

48

File-Systems

Ch 13: File system interface

* File Concept, types

e Attributes, Access Methods, operations, Protection

* Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation

Ch 15: File system internals

« Storage abstraction: File system metadata (size, free lists), File
metadata(attributes, disk block maps), data blocks

* Allocation of blocks to files: contiguous, sequential, linked list
allocation, indexed

* In memory info: Mount table, directory structure cache, open file
table, buffers

e Unix: inode numbers for directories and files
Ch 11: Mass storage: technology specific details

Colorado State University

File Systems

56/J7

N -
= . :(
<~ ~ e e S
NS

"MS. GRIMMETT, | SORT OF LIKED THE OLD FILING SYSTEM...IN THE FILE CABINETS."

Colorado State University

49

File types

Type used by programs not OS

50

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine

language, not linked

source code C, CC, java, pas,

source code in various

asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor| wp, tex, rtf, various word-processor
doc formats
library lib, a, so, dll libraries of routines for
programmers
print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, rm, | binary file containing

mp3, avi

audio or A/V information

Colorado State University

File Attributes

Name — only information kept in human-readable
form

Identifier — unique tag (number) identifies file
within file system

Type — needed for systems that support different
types

Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing,
executing

Time, date, and user identification — data for
protection, security, and usage monitoring

Information about files are kept in the directory
structure, which is maintained on the disk

Many variations, including extended file attributes
such as file checksum

O 00 ™ lltexinfo

1l.tex 111 K8
.. Modified: Today 2:00 PM

» Spotlight Comments

¥ General:

Kind: TeX Document
Size: 111,389 bytes (115 K8 on disk)
Where: /Users/greg/Dropbox/osc9e/tex
Created: Today 1:46 PM
Modified: Today 2:00 PM
Label: x S8 es

("] Stationery pad
") Locked

¥ More Info:
Last opened: Today 1:47 PM

¥ Name & Extension:

11.tex

[Hide extension

¥ Open with:
[X rexmaker s

Use this application to open all documents
like this one.

Change All,

P Preview:

¥ Sharing & Permissions:
You can read and write

Name Privilege
A greg Me) + Read & Write
18 staff + Read only
n everyone + No Access
*I= (@] a

Colorado State University

Disk Structure

52

Disk can be subdivided into partitions

* Disks or partitions can be RAID protected against
failure

e Partition can be formatted with a file system.
Different partitions can host different file systemes.

* Entity containing file system known as a volume

 Each volume containing file system also tracks that
file system’s info in device directory or volume
table of contents

As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

Colorado State University

Directory Structure

Directory: A collection of nodes containing information about all files

Directory Q Q Q Q Q

\
\
. \N
Files F4 !
Fn

Both the directory structure and the files reside on disk

Colorado State University

53

Operations Performed on Directory

* Traverse the file system
* List a directory
e Search for afile

* Create/Delete/Rename a file

Colorado State University

54

Directory Organization

* All files within a directory must have a

unigue name. But .. root | dict | spell
Evolution of directory structure / \
¢ Slngle level direCtory fist | all | w |count count|words| list

Two-level directory CS \‘O/ Cl)

Tree-structured directories:

— efficient grouping, searching, *

» list | rade | w7

— absolute or relative path names ClD (l) Cl)
Acyclic graph directories

— Shared sub-directory, files

Colorado State University

55

	Slide 1
	Slide 2: Please be considerate
	Slide 3: Project D2 Progress report
	Slide 4: Page Replacement Algorithms
	Slide 5: First-In-First-Out (FIFO) Algorithm
	Slide 6: “Optimal” Algorithm Belady 66
	Slide 7: Least Recently Used (LRU) Algorithm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Answers
	Slide 14
	Slide 15
	Slide 16: LRU Algorithm: Implementations
	Slide 17: Use Of A Stack to Record Most Recent Page References
	Slide 18: LRU Approximation Algorithms
	Slide 19: Ref bit + history shift register
	Slide 20: Second-chance algorithm
	Slide 21: Second-Chance (clock) Page-Replacement Algorithm
	Slide 22: Enhanced Second-Chance Algorithm
	Slide 23: Counting Algorithms
	Slide 24: Clever Techniques for enhancing Perf
	Slide 25: Buffering and applications
	Slide 26: Allocation of Frames
	Slide 27: Fixed Allocation
	Slide 28: Priority Allocation
	Slide 29: Global vs. Local Allocation
	Slide 30: Problem: Thrashing
	Slide 31: Thrashing (Cont.)
	Slide 32: Demand Paging and Thrashing
	Slide 33: Locality In A Memory-Reference Pattern
	Slide 34: Working-Set Model
	Slide 35: Page-Fault Frequency Approach
	Slide 36: Working Sets and Page Fault Rates
	Slide 37: Memory-Mapped Files
	Slide 38: Memory Mapped Files
	Slide 39: Allocating Kernel Memory
	Slide 40: Other Considerations -- Prepaging
	Slide 41: Other Issues – Page Size
	Slide 42: Page size issues – TLB Reach
	Slide 43: Other Issues – Program Structure
	Slide 46: Example: MS Windows
	Slide 47
	Slide 48: File-Systems
	Slide 49: File Systems
	Slide 50: File types
	Slide 51: File Attributes
	Slide 52: Disk Structure
	Slide 53: Directory Structure
	Slide 54: Operations Performed on Directory
	Slide 55: Directory Organization

