CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L20
File Systems

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Virtual Memory

* Main memory — secondary memory interaction
* Demand Paging

e Effective access time

* Page replacement algorithm

* Frame allocation

* Working set, Thrashing

Colorado State University

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

File is then in memory instead of disk
A file is initially read using demand paging
— A page-sized portion of the file is read from the file system into a
physical page
— Subsequent reads/writes to/from the file are treated as ordinary
memaory accesses

Simplifies and speeds file access by driving file 1/0 through
memory rather than read () and write () system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared
But when does written data make it to disk?

— Periodically and / or at file close () time

— For example, when the pager scans for dirty pages

Colorado State University

0p)
S
=
=
Q
Q
Q
O
>
>
S
O
=
O
>

>
p -
m 2
9D o
[7p]
— ||| || © %m
O ®©
S 2
T T T T 1 W
N S T -
1 T R 1
| | o ___ (I
L L e m L ——— = . “ “
" _.II_ __ 1 1
i | 1 I _@l_‘ -
v \ A 4 Y VY \A 2 / ©
> |
S 0
€ |-
= <
™ © |10 < | = —
o ©
2
2 al
S ||
*» + +:+ *+; —
| 1 1 T L |
k== - = !] 1
r——L =4+ -=-4 T
I " SR TR TR
1 y 1 ymA—-—— 1
I r=—+r=—l——=-=== === 1
[N B B B ey
< g
92 o
[7p]
— ||| |0 |© me
O ®
-
S
S £
=

Disk File uses 6 blocks

disk file

Page tables used for mapping

Colorado State Univi

€rsl

Allocating Kernel Memory

* Treated differently from user memory
* Often allocated from a free-memory pool

— Kernel requests memory for structures of varying sizes

* Process descriptors, semaphores, file objects etc.
e Often much smaller than page size

— Some kernel memory needs to be contiguous
* e.g. for devicel/O

— approaches (skipped)

Colorado State University

Other Considerations -- Prepaging

* Prepaging
— To reduce the large number of page faults that
occurs at process startup

— Prepage all or some of the pages a process will
need, before they are referenced

— But if prepaged pages are unused, I/0 and memory
was wasted

— Assume s pages are prepaged and fraction a of the
pages is used

e Iscost of s *a saved pages faults > or < than the cost of
prepaging s *(1- a) unnecessary pages?

* o near zero = greater prepaging loses

Colorado State University

Other Issues — Page Size

* Sometimes OS designers have a choice
— Especially if running on custom-built CPU

* Page size selection must take into consideration:
— Fragmentation
— Page table size
— |/O overhead
— Number of page faults
— Locality
— TLB size and effectiveness
* Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

* On average, growing over time

Colorado State University

Page size issues — TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)

Ideally, the working set of each process is stored
in the TLB

— Otherwise there is a high degree of page faults

Colorado State University

Other Issues — Program Structure

* Program structure
— 1int[128,128] data; 1: row, 7J: column
— Each row is stored in one page
— Program 1
for (3 = 0; 7 <128; j++)
for (1 = 0; 1 < 128; i++)
datali,3] = 0;

128 x 128 = 16,384 page faults
— Program 2 inner loop =1 row =1 page
for (i = 0; 1 < 128; i++)

fO]f (j = M j < 128; j++)samepage
datal[i,Jj] = 0;

128 page faults

Colorado State University

Example: MS Windows

10

e Uses demand paging with clustering. Clustering

brings in pages surrounding the faulting page

Processes are assigned working set minimum and
working set maximum

— Working set minimum is the minimum number of pages
the process is guaranteed to have in memory

— A process may be assigned as pages up to its working
set maximum

When the amount of free memory in the system

falls below a threshold, automatic working set

trimming is performed to restore the amount of

free memory

— Working set trimming removes pages from processes
that have pages in excess of their working set minimum

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

File-system

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

11

12

File-Systems

Ch 13: File system interface

* File Concept, types

e Attributes, Access Methods, operations, Protection

* Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation

Ch 15: File system internals

« Storage abstraction: File system metadata (size, free lists), File
metadata(attributes, disk block maps), data blocks

* Allocation of blocks to files: contiguous, sequential, linked list
allocation, indexed

* In memory info: Mount table, directory structure cache, open file
table, buffers

e Unix: inode numbers for directories and files
Ch 11: Mass storage: technology specific details

Colorado State University

File Systems

56/J7

N -
= . :(
<~ ~ e e S
NS

"MS. GRIMMETT, | SORT OF LIKED THE OLD FILING SYSTEM...IN THE FILE CABINETS."

Colorado State University

13

File types

Type used by programs not OS

14

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine

language, not linked

source code C, CC, java, pas,

source code in various

asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor| wp, tex, rtf, various word-processor
doc formats
library lib, a, so, dll libraries of routines for
programmers
print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, rm, | binary file containing

mp3, avi

audio or A/V information

Colorado State University

File Attributes

Name — only information kept in human-readable
form

Identifier — unique tag (number) identifies file
within file system

Type — needed for systems that support different
types

Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing,
executing

Time, date, and user identification — data for
protection, security, and usage monitoring

Information about files are kept in the directory
structure, which is maintained on the disk

Many variations, including extended file attributes
such as file checksum

O 00 ™ lltexinfo

1l.tex 111 K8
.. Modified: Today 2:00 PM

» Spotlight Comments

¥ General:

Kind: TeX Document
Size: 111,389 bytes (115 K8 on disk)
Where: /Users/greg/Dropbox/osc9e/tex
Created: Today 1:46 PM
Modified: Today 2:00 PM
Label: x S8 es

("] Stationery pad
") Locked

¥ More Info:
Last opened: Today 1:47 PM

¥ Name & Extension:

11.tex

[Hide extension

¥ Open with:
[X rexmaker s

Use this application to open all documents
like this one.

Change All,

P Preview:

¥ Sharing & Permissions:
You can read and write

Name Privilege
A greg Me) + Read & Write
18 staff + Read only
n everyone + No Access
*I= (@] a

Colorado State University

Disk Structure

16

Disk can be subdivided into partitions

* Disks or partitions can be RAID protected against
failure

e Partition can be formatted with a file system.
Different partitions can host different file systemes.

* Entity containing file system known as a volume

 Each volume containing file system also tracks that
file system’s info in device directory or volume
table of contents

As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

Colorado State University

Directory Structure

Directory: A collection of nodes containing information about all files

Directory Q Q Q Q Q

\
\
. \N
Files F4 !
Fn

Both the directory structure and the files reside on disk

Colorado State University

17

Course notes

* Help Session for HW5 today (Thursday Oct 31) 5 PM in
CSB 130.

 Multithreaded Virtual Network Simulation with
producer consumer interaction (Java)

D2 due today.

Colorado State University

18

Directory Organization

* All files within a directory must have a

unigue name. But .. root | dict | spell
Evolution of directory structure / \
¢ Slngle level direCtory fist | all | w |count count|words| list

Two-level directory CS \‘O/ Cl)

Tree-structured directories:

— efficient grouping, searching, *

» list | rade | w7

— absolute or relative path names ClD (l) Cl)
Acyclic graph directories

— Shared sub-directory, files

Colorado State University

19

20

File System Mounting

* A file system must be mounted before it can be
accessed

A unmounted file system is mounted at a mount point
* Maerges the file system

root

bin dev lib mnt usr b%
(b)

(a)

Colorado State University

File Sharing

21

Sharing of files on multi-user systems is desirable
Sharing may be done through a protection scheme

On distributed systems, files may be shared across a
network

Network File System (NFS) is a common distributed
file-sharing method

If multi-user system

— User IDs identify users, allowing permissions and
protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

— Owner of afile / directory
— Group of a file / directory

Colorado State University

22

Protection: Access Lists and Groups

Mode of access: read, write, execute
Three classes of users on Unix / Linux

a) owner access

b) group access

c) public access

RWX

7 = 111
RWX
6 = 110
RWX
1 = 001

Ask manager to create a group (unique name), say
G, and add some users to the group.

For a particular file (say game) or subdirectory,

define an appropriate access.

owner group public

N

chmod 761 game

Attach a group to a file
chgrp

G

game

Colorado State University

Windows 7 Access-Control List Management

ListPanel.java Properties [

General | Security | Detailz | Frevious Versions

Chbject name: HADATANPattems Materal' Snc'ListPanel java

IEI'I.'.IIJIII ar user names:

5% SYSTEM
?, Gregony G. Gagne (ggagne@wcousers.int)

92, File Admins (WCUSERS\FileAdmins)
52, Administrators (FILES\Administrators)

To change pemissions, click Edit. e

Pemissions for Guest Allow Dery

Full control

Madify

Fead & execute
Read

Write

Special permissions

For special pemissions or advanced settings, Ad
vanced
click Advanced.

Leam about access control and pemissions

A L

OK || Cancel | Aoply

Colorado State University

23

-I'W-TW-I--

drwXrwxr-x
drwxrwx---
-IW-T--I--
-TWXI-XI-X
drwx--X--x

| pbg
J pbg
2 pbg
2 pbg
| pbg
| pbg
4 pbg
3 pbg
3 pbg

student

faculty

A Sample UNIX Directory Listing

Sep 3 08:30 1ntro.ps

Jul 809.33 private/
Jul809:35 doc/

Aug 3 14:13 student-proj/
Feb 24 2003 program.c
Feb 24 2003 program

Jul 3110:31 b/

Aug 29 06:52 mail/

Jul 809:35 test/

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

File-system
Implementation

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

25

Chap 14/15: File System Implementation/internals

* File-System Structure

* File-System Implementation
* Directory Implementation

* Allocation Methods

* Free-Space Management

e Efficiency and Performance
* Recovery

Colorado State University

26

27

File-System Structure

File structure

— Logical storage unit

— Collection of related information

File system resides on secondary storage (disks/SSD)

— Provides user interface to storage, mapping logical to physical

— Provides efficient and convenient access to disk by allowing data
to be stored, located retrieved easily

— Can be on other media (flash etc), with different file system

Disk provides in-place rewrite and random access
— 1/0 transfers performed in blocks of sectors (usually 512 bytes)

File control block — storage structure -information about
a file (“inode” in Linux) inc location of data

Device driver controls the physical device

Colorado State University

28

File
system

Layered File System

application programs

Jl

logical file system Files, metadata

'

file-organization module Logical blocks to

Jl physical blocks
basic file system Linear array of
@ blocks
/O control Device drivers
devices
Colorado State University

30

File System Layers (from bottom)

Device drivers manage |/O devices at the I/O control layer

— Given commands like “,[ead drivel, cylinder 72, track 2, sector 10, into
memory location 1060 " outputs low-level hardware specific commands to
hardware controller

“Basic file system” given command like “retrieve block 123" translates to
device driver

— Also manages memory buffers and caches (allocation, freeing, replacement)
e Buffers hold data in transit
* Caches hold frequently used data

File organization module understands files, logical address, and physical
blocks

- Translates logical block # to physical block #
Manages free space, disk allocation

Logical file system manages metadata information

— Translates file name into file number, file handle, location by maintaining file
control blocks (inodes in UNIX)

— Directory management
— Protection

Colorado State University

File Systems

31

* Many file systems, sometimes several within an
operating system
— Each with its own format

* Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT
(USB/SD cards 2006), ReFS (2012)

* Linux has more than 40 types, with extended file system
(1992) ext2 (1993), ext3 (2001), ext4 (2008);

 distributed file systems, GoogleFS (2003), HDFS (2006)
 floppy, CD, DVD Blu-ray ..

— New ones still arriving..

Colorado State University

Data and Metadata

Storage abstraction:

* File system metadata (size, free lists),

— File metadata (attributes, disk block maps),
* Data blocks

Colorado State University

32

33

Process, System, Files

File descriptors
0 File table
1 read
5 Inode table
3 write /home/joe/wikidb
1 > read-write
.. [etc/passwd

File descriptor table for a process: File descriptor, pointer

System wide open File Table: r/w status, offset, inode
number

Inode table for all files/dirs: indexed by inode numbers
(unix: Is —ia)
— Inode for a file: file/dir metadata, pointers to blocks

Colorado State University

OS File Data Structures

* Per-process file descriptor table - for each file,
— pointer to entry in the open file table
— current position in file (offset) FD:int
— mode in which the process will access the file (r, w, rw)
— pointers to file buffer

 Openfile table - shared by all processes with an open
file.
— open count
— Inode number

* Inode table — an inode contains

* file attributes, including ownership, protection information, access
times, ...

* pointers to location(s) of file in memory

Colorado State University

34

35

File System

Fat32

EXFAT

NTFS

ext2

ext3

ext4

Common File Systems

Journaling: keeps track of changes
not yet committed: allows recovery

Max File Size

4 GiB

128 PiB

2TiB

2TiB

2TiB

16TiB

Max Partition Size Journaling

8 TiB

128 PiB

256 TiB

32TiB

32TiB

1 EiB

No

No

Yes

No

Yes

Yes

Notes
Commonly supported

Optimized for flash
For Windows Compatibility

Legacy

Standard linux filesystem for many years.

Modern iteration of ext3.

Colorado State University

File-System Implementation: Outline

* In memory/On disk structures
* Partitions, mounting
* Disk Block allocation approaches

Colorado State University

36

File-System Implementation

Based on several on-disk and in-memory structures.
* On-disk
— Boot control block (per volume) boot block in unix

— Volume control block (per volume) master file table in UNIX

— Directory structure (per file system) file names and pointers to
corresponding FCBs

— File control block (per file) inode inunix

* [In-memory
— Mount table about mounted volumes

— The open-file tables (system-wide and per process)

— Directory structure cache
— Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition

Colorado State University

37

In-Memory File System Structures

open (file name)

A

Y

][]
[L]

directory structure

directory structure

o]

file-control block

user space

kernel memory

(a)

secondary storage

read (index)

index
per-process system-wide
open-file table open-file table

[1]
[]

data blocks

S

file-control block

user space

38

kernel memory

(b)

secondary storage

Opening a file

fopen() returns fid

Reading a file
Inode refers to an individual
file

Colorado State University

39

On-disk File-System Structures

1. Boot control block contains info needed by
system to boot OS from that volume
— Needed if volume contains OS, usually first block

of volume

block pointers or array

Volume: logical disk drive, perhaps a partition
2. Volume control block (superblock .. or
master file tablew) contains volume details

— Total # of blocks, # of free blocks, block size, free

3. Directory structure organizes the files
— File Names and inode numbers urs, master file

table wrrs
Boot Super Directory,
block block FCBs

File data blocks
Cﬁl—(l_ﬁLora o State University

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file

— Indexed using inode number; permissions, size,
dates UFS (unix file system)

— master file table using relational DB structures
NTFS

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Colorado State University

40

When a file is created

The OS
 Allocates a new FCB.
 Update directory

— Reads the appropriate directory into memory, .

unix a directory is a file with special type field

— updates it with the new file name and FCB,
— writes it back to the disk.

Colorado State University

41

Partitions and Mounting

42

Partition can be a volume containing a file system
(cooked) or raw — just a sequence of blocks with no
flle SYStem perhaps for swap space

Boot block can point to boot volume or boot
loader set of blocks that contain enough code to
know how to load the kernel from the file system

Root partition contains the OS, Mounted at boot
time
— other partitions can hold other OSes, other file systems,
or be raw

— Other partitions can mount automatically or manually
At mount time, file system consistency checked

Colorado State University

43

Virtual File Systems

Virtual File Systems (VFS) in Unix kernel is an
abstraction layer on top of specific file systems.

VFS allows the same system call interface (the API) to
be used for different types of file systems

The API (POSIX system calls) is to the VFS interface,
rather than any specific type of file system

file-system interface

VFS interface Virtual to specific FS interface

local file system local file system remote file system
type 1 type 2 type 1

2 Colorado State University

44

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC

NFS (Network File System)

User
level
application

\

* KERNEL

VES

|

Local
File
System

NES
Client

—

Client Computer

RPC) system (1984).

the

nerwor

KERNEL

VES

f

Y

NES
Sever

Local
File
System

=

Server Computer

Colorado State University

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749

45

File Sharing — Remote File Systems

e Uses networking to allow file system access between
systems

Manually via programs like FTP/SFTP
Automatically, seamlessly using distributed file systems
Semi automatically via the world wide web

* Client-server model allows clients to mount remote
file systems from servers

Server can serve multiple clients

Client and user-on-client identification is insecure or
complicated

NFS is standard UNIX client-server file sharing protocol
CIFS is standard Windows protocol

Standard operating system file calls are translated into
remote calls

Colorado State University

	Slide 1
	Slide 2: Virtual Memory
	Slide 3: Memory-Mapped Files
	Slide 4: Memory Mapped Files
	Slide 5: Allocating Kernel Memory
	Slide 6: Other Considerations -- Prepaging
	Slide 7: Other Issues – Page Size
	Slide 8: Page size issues – TLB Reach
	Slide 9: Other Issues – Program Structure
	Slide 10: Example: MS Windows
	Slide 11
	Slide 12: File-Systems
	Slide 13: File Systems
	Slide 14: File types
	Slide 15: File Attributes
	Slide 16: Disk Structure
	Slide 17: Directory Structure
	Slide 18: Course notes
	Slide 19: Directory Organization
	Slide 20: File System Mounting
	Slide 21: File Sharing
	Slide 22: Protection: Access Lists and Groups
	Slide 23: Windows 7 Access-Control List Management
	Slide 24: A Sample UNIX Directory Listing
	Slide 25
	Slide 26: Chap 14/15: File System Implementation/internals
	Slide 27: File-System Structure
	Slide 28: Layered File System
	Slide 30: File System Layers (from bottom)
	Slide 31: File Systems
	Slide 32: Data and Metadata
	Slide 33: Process, System, Files
	Slide 34: OS File Data Structures
	Slide 35: Common File Systems
	Slide 36: File-System Implementation: Outline
	Slide 37: File-System Implementation
	Slide 38: In-Memory File System Structures
	Slide 39: On-disk File-System Structures
	Slide 40: File-System Implementation (Cont.)
	Slide 41: When a file is created
	Slide 42: Partitions and Mounting
	Slide 43: Virtual File Systems
	Slide 44: NFS (Network File System)
	Slide 45: File Sharing – Remote File Systems

