
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L20
File Systems

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Virtual Memory

• Main memory – secondary memory interaction

• Demand Paging

• Effective access time

• Page replacement algorithm

• Frame allocation

• Working set, Thrashing

3

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• File is then in memory instead of disk
• A file is initially read using demand paging

– A page-sized portion of the file is read from the file system into a
physical page

– Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

• Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

• But when does written data make it to disk?
– Periodically and / or at file close() time
– For example, when the pager scans for dirty pages

4

Memory Mapped Files

Disk File uses 6 blocks
Page tables used for mapping

5

Allocating Kernel Memory

• Treated differently from user memory

• Often allocated from a free-memory pool

– Kernel requests memory for structures of varying sizes
• Process descriptors, semaphores, file objects etc.

• Often much smaller than page size

– Some kernel memory needs to be contiguous
• e.g. for device I/O

– approaches (skipped)

6

Other Considerations -- Prepaging

• Prepaging

– To reduce the large number of page faults that
occurs at process startup

– Prepage all or some of the pages a process will
need, before they are referenced

– But if prepaged pages are unused, I/O and memory
was wasted

– Assume s pages are prepaged and fraction α of the
pages is used
• Is cost of s * α saved pages faults > or < than the cost of

prepaging s * (1- α) unnecessary pages?

• α near zero  greater prepaging loses

7

Other Issues – Page Size

• Sometimes OS designers have a choice
– Especially if running on custom-built CPU

• Page size selection must take into consideration:
– Fragmentation

– Page table size

– I/O overhead

– Number of page faults

– Locality

– TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

• On average, growing over time

8

Page size issues – TLB Reach

• TLB Reach - The amount of memory accessible
from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored
in the TLB

– Otherwise there is a high degree of page faults

9

Other Issues – Program Structure

• Program structure
– int[128,128] data; i: row, j: column

– Each row is stored in one page
– Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++) multiple pages

 data[i,j] = 0;

 128 x 128 = 16,384 page faults

– Program 2 inner loop = 1 row = 1 page
 for (i = 0; i < 128; i++)
 for (j = 0; j < 128; j++)same page

 data[i,j] = 0;

128 page faults

10

Example: MS Windows

• Uses demand paging with clustering. Clustering
brings in pages surrounding the faulting page

• Processes are assigned working set minimum and
working set maximum
– Working set minimum is the minimum number of pages

the process is guaranteed to have in memory

– A process may be assigned as pages up to its working
set maximum

• When the amount of free memory in the system
falls below a threshold, automatic working set
trimming is performed to restore the amount of
free memory
– Working set trimming removes pages from processes

that have pages in excess of their working set minimum

11 11

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

File-system

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

12

File-Systems

Ch 13: File system interface
• File Concept, types
• Attributes, Access Methods, operations, Protection
• Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation
Ch 15: File system internals
• Storage abstraction: File system metadata (size, free lists), File

metadata(attributes, disk block maps), data blocks
• Allocation of blocks to files: contiguous, sequential, linked list

allocation, indexed
• In memory info: Mount table, directory structure cache, open file

table, buffers
• Unix: inode numbers for directories and files
Ch 11: Mass storage: technology specific details

13

File Systems

14

File types

Type used by programs not OS

15

File Attributes
• Name – only information kept in human-readable

form
• Identifier – unique tag (number) identifies file

within file system
• Type – needed for systems that support different

types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing,

executing
• Time, date, and user identification – data for

protection, security, and usage monitoring
• Information about files are kept in the directory

structure, which is maintained on the disk
• Many variations, including extended file attributes

such as file checksum

16

Disk Structure

Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against

failure
• Partition can be formatted with a file system.

Different partitions can host different file systems.
• Entity containing file system known as a volume
• Each volume containing file system also tracks that

file system’s info in device directory or volume
table of contents

As well as general-purpose file systems there are
many special-purpose file systems, frequently all
within the same operating system or computer

17

Directory Structure

Directory: A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

18

Course notes

• Help Session for HW5 today (Thursday Oct 31) 5 PM in
CSB 130.

• Multithreaded Virtual Network Simulation with
producer consumer interaction (Java)

• D2 due today.

19

Directory Organization

• All files within a directory must have a
unique name. But ..

Evolution of directory structure

• Single level directory

• Two-level directory

• Tree-structured directories:

– efficient grouping, searching,

– absolute or relative path names

• Acyclic graph directories

– Shared sub-directory, files

20

File System Mounting

• A file system must be mounted before it can be
accessed

• A unmounted file system is mounted at a mount point

• Merges the file system

root

21

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a
network

• Network File System (NFS) is a common distributed
file-sharing method

• If multi-user system
– User IDs identify users, allowing permissions and

protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

– Owner of a file / directory

– Group of a file / directory

22

Protection: Access Lists and Groups

• Mode of access: read, write, execute
• Three classes of users on Unix / Linux
 RWX
 a) owner access 7  1 1 1

 RWX
 b) group access 6  1 1 0
 RWX
 c) public access 1  0 0 1

• Ask manager to create a group (unique name), say
G, and add some users to the group.

• For a particular file (say game) or subdirectory,
define an appropriate access.

• Attach a group to a file
 chgrp G game

23

Windows 7 Access-Control List Management

24

A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name

25 25

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

File-system
Implementation

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

26

Chap 14/15: File System Implementation/internals

• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

• Efficiency and Performance

• Recovery

27

File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks/SSD)
– Provides user interface to storage, mapping logical to physical
– Provides efficient and convenient access to disk by allowing data

to be stored, located retrieved easily
– Can be on other media (flash etc), with different file system

• Disk provides in-place rewrite and random access
– I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure -information about
a file (“inode” in Linux) inc location of data

• Device driver controls the physical device

28

Layered File System

Device drivers

Logical blocks to
physical blocks

Files, metadata

File
system

Linear array of
blocks

30

File System Layers (from bottom)

• Device drivers manage I/O devices at the I/O control layer
– Given commands like “read drive1, cylinder 72, track 2, sector 10, into

memory location 1060” outputs low-level hardware specific commands to
hardware controller

• “Basic file system” given command like “retrieve block 123” translates to
device driver
– Also manages memory buffers and caches (allocation, freeing, replacement)

• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical
blocks
- Translates logical block # to physical block #
- Manages free space, disk allocation

• Logical file system manages metadata information
– Translates file name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)
– Directory management
– Protection

31

File Systems

• Many file systems, sometimes several within an
operating system

– Each with its own format

• Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT
(USB/SD cards 2006), ReFS (2012)

• Linux has more than 40 types, with extended file system
(1992) ext2 (1993), ext3 (2001), ext4 (2008);

• distributed file systems, GoogleFS (2003), HDFS (2006)

• floppy, CD, DVD Blu-ray ..

– New ones still arriving..

32

Data and Metadata

Storage abstraction:

• File system metadata (size, free lists),

– File metadata (attributes, disk block maps),
• Data blocks

33

Process, System, Files

• File descriptor table for a process: File descriptor, pointer

• System wide open File Table: r/w status, offset, inode
number

• Inode table for all files/dirs: indexed by inode numbers
(unix: ls –ia)
– Inode for a file: file/dir metadata, pointers to blocks

34

OS File Data Structures

• Per-process file descriptor table - for each file,
– pointer to entry in the open file table

– current position in file (offset)

– mode in which the process will access the file (r, w, rw)

– pointers to file buffer

• Open file table - shared by all processes with an open
file.
– open count

– Inode number

• Inode table – an inode contains
• file attributes, including ownership, protection information, access

times, ...

• pointers to location(s) of file in memory

FD: int

35

Common File Systems

File System Max File Size Max Partition Size Journaling Notes

Fat32 4 GiB 8 TiB No Commonly supported

ExFAT 128 PiB 128 PiB No Optimized for flash

NTFS 2 TiB 256 TiB Yes For Windows Compatibility

ext2 2 TiB 32 TiB No Legacy

ext3 2 TiB 32 TiB Yes Standard linux filesystem for many years.

ext4 16 TiB 1 EiB Yes Modern iteration of ext3.

Journaling: keeps track of changes
not yet committed: allows recovery

36

File-System Implementation: Outline

• In memory/On disk structures

• Partitions, mounting

• Disk Block allocation approaches

37

File-System Implementation

Based on several on-disk and in-memory structures.

• On-disk
– Boot control block (per volume) boot block in unix

– Volume control block (per volume) master file table in UNIX

– Directory structure (per file system) file names and pointers to
corresponding FCBs

– File control block (per file) inode in unix

• In-memory
– Mount table about mounted volumes

– The open-file tables (system-wide and per process)
– Directory structure cache

– Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition

38

In-Memory File System Structures

Opening a file
fopen() returns fid

Reading a file
Inode refers to an individual
file

39

On-disk File-System Structures

1. Boot control block contains info needed by
system to boot OS from that volume
– Needed if volume contains OS, usually first block

of volume

2. Volume control block (superblock ext or
master file tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free

block pointers or array

3. Directory structure organizes the files
– File Names and inode numbers UFS, master file

table NTFS

Volume: logical disk drive, perhaps a partition

Super

block

Directory,

FCBs
File data blocks

Boot

block

40

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file

– Indexed using inode number; permissions, size,
dates UFS (unix file system)

– master file table using relational DB structures
NTFS

41

When a file is created

The OS

• Allocates a new FCB.

• Update directory

– Reads the appropriate directory into memory, in

unix a directory is a file with special type field

– updates it with the new file name and FCB,

– writes it back to the disk.

42

Partitions and Mounting

• Partition can be a volume containing a file system
(cooked) or raw – just a sequence of blocks with no
file system perhaps for swap space

• Boot block can point to boot volume or boot
loader set of blocks that contain enough code to
know how to load the kernel from the file system

• Root partition contains the OS, Mounted at boot
time
– other partitions can hold other OSes, other file systems,

or be raw

– Other partitions can mount automatically or manually

• At mount time, file system consistency checked

43

Virtual File Systems

• Virtual File Systems (VFS) in Unix kernel is an
abstraction layer on top of specific file systems.

• VFS allows the same system call interface (the API) to
be used for different types of file systems

• The API (POSIX system calls) is to the VFS interface,
rather than any specific type of file system

Virtual to specific FS interface

44

NFS (Network File System)

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC
RPC) system (1984).

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749

45

File Sharing – Remote File Systems

• Uses networking to allow file system access between
systems
– Manually via programs like FTP/SFTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote
file systems from servers
– Server can serve multiple clients

– Client and user-on-client identification is insecure or
complicated

– NFS is standard UNIX client-server file sharing protocol

– CIFS is standard Windows protocol

– Standard operating system file calls are translated into
remote calls

	Slide 1
	Slide 2: Virtual Memory
	Slide 3: Memory-Mapped Files
	Slide 4: Memory Mapped Files
	Slide 5: Allocating Kernel Memory
	Slide 6: Other Considerations -- Prepaging
	Slide 7: Other Issues – Page Size
	Slide 8: Page size issues – TLB Reach
	Slide 9: Other Issues – Program Structure
	Slide 10: Example: MS Windows
	Slide 11
	Slide 12: File-Systems
	Slide 13: File Systems
	Slide 14: File types
	Slide 15: File Attributes
	Slide 16: Disk Structure
	Slide 17: Directory Structure
	Slide 18: Course notes
	Slide 19: Directory Organization
	Slide 20: File System Mounting
	Slide 21: File Sharing
	Slide 22: Protection: Access Lists and Groups
	Slide 23: Windows 7 Access-Control List Management
	Slide 24: A Sample UNIX Directory Listing
	Slide 25
	Slide 26: Chap 14/15: File System Implementation/internals
	Slide 27: File-System Structure
	Slide 28: Layered File System
	Slide 30: File System Layers (from bottom)
	Slide 31: File Systems
	Slide 32: Data and Metadata
	Slide 33: Process, System, Files
	Slide 34: OS File Data Structures
	Slide 35: Common File Systems
	Slide 36: File-System Implementation: Outline
	Slide 37: File-System Implementation
	Slide 38: In-Memory File System Structures
	Slide 39: On-disk File-System Structures
	Slide 40: File-System Implementation (Cont.)
	Slide 41: When a file is created
	Slide 42: Partitions and Mounting
	Slide 43: Virtual File Systems
	Slide 44: NFS (Network File System)
	Slide 45: File Sharing – Remote File Systems

