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Virtual Memory

• Main memory – secondary memory interaction

• Demand Paging

• Effective access time

• Page replacement algorithm

• Frame allocation

• Working set, Thrashing
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Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine 
memory access by mapping a disk block to a page in memory

• File is then in memory instead of disk
• A file is initially read using demand paging

– A page-sized portion of the file is read from the file system into a 
physical page

– Subsequent reads/writes to/from the file are treated as ordinary 
memory accesses

• Simplifies and speeds file access by driving file I/O through 
memory rather than read() and write() system calls

• Also allows several processes to map the same file allowing the 
pages in memory to be shared

• But when does written data make it to disk?
– Periodically and / or at file close() time
– For example, when the pager scans for dirty pages
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Memory Mapped Files

Disk File uses 6 blocks
Page tables used for mapping
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Allocating Kernel Memory

• Treated differently from user memory

• Often allocated from a free-memory pool

– Kernel requests memory for structures of varying sizes
• Process descriptors, semaphores, file objects etc.

• Often much smaller than page size

– Some kernel memory needs to be contiguous
• e.g. for device I/O

– approaches (skipped)
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Other Considerations -- Prepaging

• Prepaging 

– To reduce the large number of page faults that 
occurs at process startup

– Prepage all or some of the pages a process will 
need, before they are referenced

– But if prepaged pages are unused, I/O and memory 
was wasted

– Assume s pages are prepaged and fraction α of the 
pages is used
• Is cost of s * α  saved pages faults > or < than the cost of 

prepaging   s * (1- α) unnecessary pages?  

• α near zero  greater prepaging loses 
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Other Issues – Page Size

• Sometimes OS designers have a choice
– Especially if running on custom-built CPU

• Page size selection must take into consideration:
– Fragmentation

– Page table size 

– I/O overhead

– Number of page faults

– Locality

– TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096 
bytes) to 222 (4,194,304 bytes)

• On average, growing over time
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Page size issues – TLB Reach 

• TLB Reach - The amount of memory accessible 
from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored 
in the TLB

– Otherwise there is a high degree of page faults
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Other Issues – Program Structure

• Program structure
– int[128,128] data;  i: row, j: column

– Each row is stored in one page 
– Program 1 

    for (j = 0; j <128; j++)
     for (i = 0; i < 128; i++) multiple pages

                  data[i,j] = 0;

     128 x 128 = 16,384 page faults 

– Program 2   inner loop = 1 row = 1 page 
  for (i = 0; i < 128; i++)
     for (j = 0; j < 128; j++)same page

          data[i,j] = 0;

128 page faults
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Example: MS Windows

• Uses demand paging with clustering. Clustering 
brings in pages surrounding the faulting page

• Processes are assigned working set minimum and 
working set maximum
– Working set minimum is the minimum number of pages 

the process is guaranteed to have in memory

– A process may be assigned as pages up to its working 
set maximum

• When the amount of free memory in the system 
falls below a threshold, automatic working set 
trimming is performed to restore the amount of 
free memory
– Working set trimming removes pages from processes 

that have pages in excess of their working set minimum
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File-Systems

Ch 13: File system interface
• File Concept, types
• Attributes, Access Methods, operations, Protection
• Directory Structure, namespace, File-System Mounting, File Sharing
Ch 14: File system implementation
Ch 15: File system internals
• Storage abstraction: File system metadata (size, free lists), File 

metadata(attributes, disk block maps), data blocks
• Allocation of blocks to files: contiguous, sequential, linked list 

allocation,  indexed
• In memory info: Mount table, directory structure cache, open file 

table, buffers
• Unix: inode numbers for directories and files
Ch 11: Mass storage: technology specific details



13

File Systems
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File types

Type used by programs not OS
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File Attributes
• Name – only information kept in human-readable 

form
• Identifier – unique tag (number) identifies file 

within file system
• Type – needed for systems that support different 

types
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing, 

executing
• Time, date, and user identification – data for 

protection, security, and usage monitoring
• Information about files are kept in the directory 

structure, which is maintained on the disk
• Many variations, including extended file attributes 

such as file checksum
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Disk Structure

Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against 

failure
• Partition can be formatted with a file system. 

Different partitions can host different file systems.
• Entity containing file system known as a volume
• Each volume containing file system also tracks that 

file system’s info in device directory or volume 
table of contents

As well as general-purpose file systems there are 
many special-purpose file systems, frequently all 
within the same operating system or computer
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Directory Structure

Directory: A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
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Course notes

• Help Session for HW5 today (Thursday Oct 31) 5 PM in 
CSB 130.

• Multithreaded Virtual Network Simulation with 
producer consumer interaction (Java)

• D2 due today.
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Directory Organization

• All files within a directory must have a 
unique name. But ..

Evolution of directory structure

• Single level directory 

• Two-level directory 

• Tree-structured directories: 

– efficient grouping, searching,  

– absolute or relative path names

• Acyclic graph directories 

– Shared sub-directory, files 
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File System Mounting

• A file system must be mounted before it can be 
accessed

• A unmounted file system is mounted at a mount point

• Merges the file system

root
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File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a 
network

• Network File System (NFS) is a common distributed 
file-sharing method

• If multi-user system
– User IDs identify users, allowing permissions and 

protections to be per-user
Group IDs allow users to be in groups, permitting group 
access rights

– Owner of a file / directory

– Group of a file / directory
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Protection: Access Lists and Groups

• Mode of access:  read, write, execute
• Three classes of users on Unix / Linux
     RWX
  a) owner access 7  1 1 1

    RWX
  b) group access 6   1 1 0
     RWX
  c) public access 1   0 0 1

• Ask manager to create a group (unique name), say 
G, and add some users to the group.

• For a particular file (say game) or subdirectory, 
define an appropriate access.

• Attach a group to a file
          chgrp     G    game
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Windows 7 Access-Control List Management
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A Sample UNIX Directory Listing

dir, access, links, owner, group owner, size, last modification time, name 
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Chap 14/15: File System Implementation/internals

• File-System Structure

• File-System Implementation 

• Directory Implementation

• Allocation Methods

• Free-Space Management 

• Efficiency and Performance

• Recovery
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File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks/SSD)
– Provides user interface to storage, mapping logical to physical
– Provides efficient and convenient access to disk by allowing data 

to be stored, located retrieved easily
– Can be on other media (flash etc), with different file system

• Disk provides in-place rewrite and random access
– I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure -information  about 
a file (“inode” in Linux) inc location of data

• Device driver controls the physical device 
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Layered File System

Device drivers

Logical blocks to 
physical blocks

Files, metadata

File
system

Linear array of 
blocks
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File System Layers (from bottom)

• Device drivers manage I/O devices at the I/O control layer
– Given commands like “read drive1, cylinder 72, track 2, sector 10, into 

memory location 1060” outputs low-level hardware specific commands to 
hardware controller

• “Basic file system” given command like “retrieve block 123” translates to 
device driver
– Also manages memory buffers and caches (allocation, freeing, replacement) 

• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical 
blocks
- Translates logical block # to physical block #
- Manages free space, disk allocation

• Logical file system manages metadata information
– Translates file name into file number, file handle, location by maintaining file 

control blocks (inodes in UNIX)
– Directory management
– Protection
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File Systems

• Many file systems, sometimes several within an 
operating system

– Each with its own format 

• Windows has FAT (1977), FAT32 (1996), NTFS (1993), xFAT 
(USB/SD cards 2006), ReFS (2012)

• Linux has more than 40 types, with extended file system 
(1992) ext2 (1993), ext3 (2001), ext4 (2008); 

• distributed file systems, GoogleFS (2003), HDFS (2006)

• floppy, CD, DVD Blu-ray ..

– New ones still arriving..



32

Data and Metadata

Storage abstraction: 

• File system metadata (size, free lists), 

– File metadata (attributes, disk block maps), 
• Data blocks
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Process, System, Files

• File descriptor table for a process: File descriptor, pointer

• System wide open File Table: r/w status, offset, inode 
number

• Inode table for all files/dirs: indexed by inode numbers    
(unix: ls –ia)
– Inode for a file: file/dir metadata, pointers to blocks
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OS File Data Structures

• Per-process file descriptor table - for each file, 
– pointer to entry in the open file table 

– current position in file (offset) 

– mode in which the process will access the file (r, w, rw) 

– pointers to file buffer

•  Open file table - shared by all processes with an open 
file. 
– open count 

– Inode number

• Inode table – an inode contains
• file attributes, including ownership, protection information, access 

times, ... 

• pointers to location(s) of file in memory

FD: int
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Common File Systems

File System Max File Size Max Partition Size Journaling Notes

Fat32 4 GiB 8 TiB No Commonly supported

ExFAT 128 PiB 128 PiB No Optimized for flash

NTFS 2 TiB 256 TiB Yes For Windows Compatibility

ext2 2 TiB 32 TiB No Legacy

ext3 2 TiB 32 TiB Yes Standard linux filesystem for many years. 

ext4 16 TiB 1 EiB Yes Modern iteration of ext3. 

Journaling: keeps track of changes 
not yet committed: allows recovery
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File-System Implementation: Outline

• In memory/On disk structures

• Partitions, mounting

• Disk Block allocation approaches
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File-System Implementation

Based on several on-disk and in-memory structures.

• On-disk
– Boot control block (per volume) boot block in unix

– Volume control block (per volume) master file table in UNIX

– Directory structure (per file system) file names and pointers to 
corresponding FCBs

– File control block (per file)  inode in unix

• In-memory
– Mount table about mounted volumes

– The open-file tables (system-wide and per process)
– Directory structure cache

– Buffers of the file-system blocks

Volume: logical disk drive, perhaps a partition
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In-Memory File System Structures

Opening a file
fopen( ) returns fid

Reading a file
Inode refers to an individual 
file
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On-disk File-System Structures

1. Boot control block contains info needed by 
system to boot OS from that volume
– Needed if volume contains OS, usually first block 

of volume

2. Volume control block (superblock ext or 
master file tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free 

block pointers or array

3. Directory structure organizes the files
– File Names and inode numbers UFS, master file 

table NTFS

Volume: logical disk drive, perhaps a partition

Super

block

Directory, 

FCBs
File data blocks

Boot

block
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File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”) 
contains many details about the file

– Indexed using inode number; permissions, size, 
dates UFS (unix file system)

– master file table  using relational DB structures 
NTFS
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When a file is created

The OS

• Allocates a new FCB.

• Update directory

– Reads the appropriate directory into memory,  in 

unix a directory is a file with special type field

– updates it with the new file name and FCB, 

– writes it back to the  disk.
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Partitions and Mounting

• Partition can be a volume containing a file system 
(cooked) or raw – just a sequence of blocks with no 
file system perhaps for swap space

• Boot block can point to boot volume or boot 
loader set of blocks that contain enough code to 
know how to load the kernel from the file system

• Root partition contains the OS, Mounted at boot 
time
– other partitions can hold other OSes, other file systems, 

or be raw

– Other partitions can mount automatically or manually

• At mount time, file system consistency checked
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Virtual File Systems

• Virtual File Systems (VFS) in Unix kernel is an 
abstraction layer on top of specific file systems.

• VFS allows the same system call interface (the API) to 
be used for different types of file systems

• The API (POSIX system calls) is to the VFS interface, 
rather than any specific type of file system

Virtual to specific FS interface
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NFS (Network File System)

Source

A distributed file system protocol uses the Open Network Computing Remote Procedure Call (ONC 
RPC) system (1984).

https://www.researchgate.net/figure/NFS-software-architecture_fig1_2364749
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File Sharing – Remote File Systems

• Uses networking to allow file system access between 
systems
– Manually via programs like FTP/SFTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote 
file systems from servers
– Server can serve multiple clients

– Client and user-on-client identification is insecure or 
complicated

– NFS is standard UNIX client-server file sharing protocol

– CIFS is standard Windows protocol

– Standard operating system file calls are translated into 
remote calls
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